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* Denoising for
score matching
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1.3 Preliminaries

Diffusion models. Throughout the paper, we use either g or gg to denote the data distribution
and X or X to denote the corresponding random variable on R?. The two main components in
diffusion models are the forward process and the reverse process. The forward process transforms
samples from the data distribution into noise, for instance via the Ornstein-Uhlenbeck (OU) process:

dX; =-X;dt+ \/§th with  Xg ~ qo,

where (W})¢>0 is a standard Brownian motion in R?. We use ¢; to denote the law of the OU process
at time t. Note that for X; ~ ¢,

X; = exp(—t)Xo + /1 — exp(—2t)Z; with Xo~ qo, Z; ~N(0,1d).

The reverse process then transforms noise into samples, thus performing generative modeling.
Ideally, this could be achieved by running the following stochastic differential equation for some
choice of terminal time T

dX ={X{ +2VoIngr +(X;7)}dt + vV2dW; with X§ ~ gr,

where now W, is the reversed Brownian motion. In this reverse process, the iterate X;~ is distributed
acccording to gr—¢ for every t € [0, T, so that the final iterate X is distributed according to the
data distribution gy. The function V. In¢; is called the score function, and because it depends on
g which is unknown, in practice one estimates it by minimizing the score matching loss

min By, lse(X0) = Vo lngu(X0) ). @)

A standard calculation (see e.g. Appendix A of [CCL™23b|) shows that this is equivalent to mini-
mizing the DDPM objective in which one wants to predict the noise Z; from the noisy observation
Xt, ie.

(5)

Zy 2
/1 — exp(—2t) H } .

ngn Lilsy) = ]EXO,Zt [ ‘St(Xt) +



MoG Settings

We begin by describing in greater detail the algorithm we analyze in this work. For the sake of
intuition, in this overview we will focus on the case of mixtures of two Gaussians (K = 2) where the
centers are well-separated and symmetric about the origin, that is, the data distribution is given by

1 I,

At the end of the overview, we briefly discuss the key challenges for handling smaller separation and
general K.

Two gaussians with symmetric means
and identity covariance matrix



Construct
Activation

Calculate Score Function

Construct network structure

a single-layer "MLP" with Tanh

Lemma 4. The score function for distribution q;, for any t > 0, is given by

K * |2
exp(—||z — p; 2
Vehgilel] = T uldalile—w,  where )= — oo 0P Pl ] 2) -
i=1 Zj:l eXP(_HI—#]‘,tH /2)

For a mixture of two Gaussians, the score function simplifies to

V. log g (x) = tanh(p! Tz)puf — 2, where p} 2 p*exp(—t)

See Appendix A for the calculation.

Recall that V. log g;(x) is the minimizer for the score-matching objective given in Eq. (4). There-
fore, we parametrize our student network architecture similarly to the optimal score function. Our
student architecture for mixtures of K Gaussians is

exp(—|lz — pitl|*/2)
K
> =1 exp(—lz — u;ell?/2)
A
i g = fig exp(—1).

where 0y = {114, plot, ..., K+ } denotes the set of parameters at the noise scale ¢. For mixtures of
two Gaussians, we simplify the student architecture as follows:

(9)

K
s, (x) = Z wi ()it — where  w;4(z) £
i=1

Y

sg,(z) = tanh(u, )y, — x, where ji; 2 pexp(—t).

K is the learnable parameters



Derivation

tanh(u'7x) = Wi, () + w3, (x)

Tanh comes from the summation
of the belongingness of x to the 2
Gaussians.

A.2 Derivation of score function

Proof of Lemma 4. For mixtures of K Gaussians in the form of Eq. (6), the score function at time
t is given by

i 2
lz—nf

K o
D 5 (2 — .u:,t)
Vg qi(z) = — le—n? (12
K i CHEE
Zj:l € .
- - HT*};:g [
= Zw;":t(:c),u;:t —x where wj,(z)= =k

i=1 Zj(:l e 3

For mixtures of two Gaussians in the form of Eq. (7), the score function is given by

Vlog Qt(m) = wT,t(I).u}lk,t s ws,t(x)n”;x -
=wi(@)p" — (1 —wyy(2)p'|— =

— Qi) - D —o (A1)
By simplifying w} ;(z), we obtain
il
wf,t(m) = 3 ] T
1 Jrexp(\\l—g = _ HI+§ I )

B il

T 14 exp(—2p*Tx)

=o(2p* ") (A.2)

where o(-) denotes the sigmoid function. Using Eq. (A.2) in Eq. (A.1), we obtain

Vlog qi(x) = panh(p* "z )fu* — =.




Recall: EM step for MoG Modeling

Expectation-Maximization (EM) algorithm. The EM algorithm is composed of two steps:
the E-step and the M-step. For mixtures of Gaussians, the E-step computes the expected log-
likelihood based on the current mean parameters and the M-step maximizes this expectation to find
a new estimate of the parameters.

Fact 5 (See e.g., [DTZ17, YYS17, KC20| for more details). When X is the mizture of K Gaussian
and {p1, e, ..., ux} are current estimates of the means, the population EM wupdate for all i €
{1,2,...,K} is given by _
Latent Variable E step

Ex[w; (X)X — | X — wil|?/2
Mistep —__ /_ X[wi(X)X] - here wi(X) = ;Xp( X — pill/2)

Ex [wi(X)] 2i=1exp(= 1 X — 5%/2)

4= 0 = FN (", 1d) + SN (4", 1d). W)

The EM update for miztures of two Gaussians given in Eq. (7) simplifies to

i = Exon(u 1) [banh(p " X)X].

An analogous version of the EM algorithm, called the gradient EM algorithm, takes a gradient
step in the direction of the M-step instead of optimizing the objective in the M-step fully.



Derivation from the cited paper DT/Z17

Analysis of Population EM for Mixtures of Two Gaussians. To elucidate the optimization
features of the algorithm and avoid analytical distractions arising due to sampling error, it has been
standard practice in the literature of theoretical analyses of EM to consider the “population version”
of the algorithm, where the EM iterations are performed assuming access to infinitely many samples
from a distribution py,, ., as above. With infinitely many samples, we can identify the mean, ”—?ﬁ,
of Pu,,u., and re-parametrize the density around the mean as follows:

2 Preliminary Observations

In this section we illustrate some simple properties of the EM update (1.2) and simplify the formul
First, it is easy to see that plugging in the values A € {—p, 0, u} into M (X, p) results into

MO,p)=0 ; M(p,p)=p (2.

In particular, for all p, these values are certainly fixed points of the EM iteration. Next, we rewri

M(—p,p) = —p

pul@) = 0.5 N (w1, 5) + 0.5 - N (3 —ps, ). G A el
05N (@AS 0.5N (2,5
We first study the convergence of EM when we perform iterations with respect to the parameter ] '\bU{\OnS %EmNN (12,) [#CE} + %Emfw\f (—,%) {%m))m]
p of p,(x) in (1.1). Starting with an initial guess A for the unknown mean vector g, the-t_thfof ixture st M, p) = g 05N (@A) g 05N (@A)
iteration of EM amounts to the following update: < expectat\on 2 e~N (%) [W} T 28N (-pT) [W}
[ inearity ©
E 05N (200 5) inea It is easy to observe that by symmetry this simplifies to
AGD = M A® ) & TPu |7 py ) (@) (1.2)

[0.5/\/(1;)\(0,2)] ?
T~Pp Py(t) (x)

where we have compacted both the E- and M-step of EM into one update.
The intuition behind the EM update formula is as follows. First, we take expectations with
respect to & ~ p,, because we are studying the population version of EM, hence we assume access

0.5M (zA(Dx) . g
=02 ) g our belief, at
Py(t) (z) L b—l_

step ¢, that x was sampled from the first Gaussian component of p,,, namely the one for which our
current estimate of its mean vector is A"/, (The complementary probability is our present belief
that « was sampled from the other Gaussian component.) Given these beliefs for all vectors x,
the update (1.2) is the result of the M-step of EM. Intuitively, our next guess A#HD for the mean
vector of the first Gaussian component is a weighted combination over all samples & ~ p,, where
the weight of every « is our belief that it came from the first Gaussian component.

to infinitely many samples from p,,. For each sample x, the ratio

1 1

1 sN (A Z)— s N (z;—A,2)

SEzn N (p7) [ ;N'(w;z\,EH»;N(m;f/\,E) m]
g [%N(:ﬂ;A,E)‘F%N(I;*A,E)]
252~ N (1Y) | TN (@A D)+ N (z-AT)

M\, p) = N(z; A, ) — N(z; -\, 5) }

= ]EmNN(%E) [N(m, ALY+ N(IE =X, E)m

Simplifying common terms in the density functions N (z; A, ), we get that

exp (AT 1) —exp (-AT2 'z
A[()‘vu) = ]EINN(;L,Z) |: ( ) ( )

exp (ATE1z) + exp (—ATEZ1x) .
We thus get the following expression for the EM iteration

M p) =Eenuy) [tanh(}\Tzflm)a:J : (2.

tanh(u*"x) = w{ . (x) + w; (x) Tanh also comes from the summation of the belief (belongingness of x to the 2 Gaussians



Large Noise Regime: Power lteration

Gradient Approximation

v

Power lteration

v

Angle Contraction

Part I: Analysis of high noise regime and connection to power iteration. We show that in
4 copf

the large noise regime, the negative gradient —V L¢(s;) is well-approximated by 25 iy ' f1s —3||,ut||2 Lt

Recall that this result is the key to showing the resemblance between gradient descent and power
iteration. Concretely, we show the following lemma:

Lemma 8 (See Lemma C.3 for more details). For ¢t = O(logd), the gradient descent update on the

DDPM objective Ly(st) can be approzimated with 2u} " e — 3|\/,Lt||2 s

H (—=VLi(st)) - (%Z‘ufut - 3HmH2m> H < poly(1/d).

From Lemma 8, it immediately follows that u't, the result of taking a single gradient step starting
from py, is well-approximated by the result of taking a single step of power iteration for a matrix
whose leading eigenvector is puj:

Hh = pe — NV Ly(s,) ~ (1A = 3nlpell®) + 205 15 e -

The second key element is to show that as a consequence of the above power iteration update,
the gradient descent converges in angular distance to the leading eigenvector. Concretely, we show
the following lemma:

Lemma 9 (Informal, see Lemma C.5 for more details). Suppose p} is the iterate after one step of
gradient descent on the DDPM objective from p. Denote the angle between py and pf to be 6 and
between py and py to be 0'. In this case, we show that

tan 6’ = max (k) tan 6, k2),
where k1 < 1 and k2 < 1/poly(d).

Note tan ' < tan@ implies that 8’ < 6 or equivalently (fi}, iF) > {fit, fif). Thus, the above lemma
shows that by taking a gradient step in the DDPM objective, the angle between p; and p; decreases.
By iterating this, we obtain the following lemma:

Uz is the first
eigenvector, because it
Is the first eigenvector

of Id and pju;"



Calculate Loss Gradient by standard
Calculus

A standard calculation (see e.g. Appendix A of [CCL*23b]) shows that this is equivalent to mini-
mizing the DDPM objective in which one wants to predict the noise Z; from the noisy observation

Xh 1.e.
]

sp, () = tanh(yu, z)pe —z, where ;2 pexp(—t).

Zy
V1 — exp(—2t)

min L(sy) =Ex, z, {

5t

si(Xy¢) +

Proof of Lemma C.2. By calculating the negative gradient of the DDPM objective in Eq. (5), we
obtain

Zy
7]

Z
—E[(tanh(; X;)I + tanh’ (i) X;) Xep) ) (tanh(p, Xo)pue — Xi + —*)]

_thLf(SHt) = IEXU Zt[( anh(f-"‘t Xf)‘r + tanh (:u't Xﬁ)Xffut )(Q#t(Xf) +

Take derivative on g
and simply expand

= E[— tanh? (i) X;) e — tanh (g X;) tanh’ (] X)X, || ]| + tanh(,uTXt)Xt

Z

T &t

Zy
+ tanh’ (i Xo)pd X X¢ — tanh(,u,;rXt) 7 —

— tanh’ (1] X)) Xop,
B



Simplify Loss Gradient by Stein’s Lemma

Because Z; and X; are dependent random variable,

analyzing them at the same time is difficult.
F Additional proofs
F.1 Proof of Lemma C.2

Proof of Lemma C.2. By calculating the negative gradient of the DDPM objective in Eq. (5), we
obtain

Z
jrJ]

_ Z
= —E|(tanh(p, X, )1 + tanh'(;2] X,) X,pe) ) (tanh(u] X )y — X + _a—’)]
Hit

VoLt (8,) = —Ex, z, [(tanh(p] X;) + tanh’ (5] X)X 1] )5, (X)) +

= B[ tanh®(p] Xi)pe — tanh(p) Xe) tanh' (2] X0) X ||pe]|® + tanh(p] X)X,

+ t&mh’(pf“&'r)ﬂrx,X; — Lallll[;irxf_]% - Lmlll’(,u;rX,)Xhu,T%]

By simplifying the gradient terms involving Z; by the Stein’s identity as in Lemma F.1 and plugging
it back in the gradient, we obtain

After Stein’s Vo La(8) = [(mh(ﬂ X,) — tanh(p X,) tanh' (] Xo)||e|> +1.-.nh'(p,TX¢};;.,T_xy)XI]
Lemma, the Zth —;;,—E[mul 1 Xf)”,u;h‘ng] IE‘.[lmh(y )m}
order and Zt =E[(x.anh(ﬂf,\ﬁ ) — 0.5 tanh” (a7 X0l gz ]| + tanh' (] X,);Jx,) X,]

are canceled

Observe that (T.-Eu.lh[p )= —l anh(p ") || )| + tanh' (g a) g :r) 2 and tanh'(p " 2) are even func-

— s —E I.Emh’(li.r! X,_],u;]

tions and X; is a symmetric distribution, therefore, for any even funetion f, we can write Ex, [f(X;)] =
SEx vty i) [ (X)) + 3B, vz [/ (Xe)] = Expnvg 1y [f (Xe)]. Applying this property of the
even function on the gradient update, we obtain the result. O

Lemma F.1. When random variable X; = oy Xy + B2y where Zy ~ N(0,I), 04 = exp(—t) and
Bt = /1 —exp(—2t), then for any t > 0, the following two equations hold.

Z; :
Ex, z. [tmlh(p;rXr}?E + l.au]lz(;x;rX,}ﬂ.f] = py
Bt

' "TZ " 1 2 1> r
Ex, 5, [l-;mh (,,,TX,)*‘{:T'X,} =Eyx, .z [1.anh (i X)) 2 X, + tank (,:JXrJ;q]
Ht

Proof. Applying Stein’s lemma on the first term, we get the first equation of the statement in the
Lemma.

on : Z » .
Ex, .z [1.:‘11111{;1;—)i;j?r} =Ex,. z [mnh{;J(r_uX“ —+ _zifzt}]?*] = Ex,.2 [lanh"[‘;trlg)yt]
i Hi

=Ex, z [(1 — tanh®(u, X:)) M}
For the second term, we have

:‘:Zf

E[ tanh’ (] X¢) L2 ] ]E[tauh (e X2 mxn] +E [Lzmlf(,ui_'XrJ.H,TZ,Z,}

B,

= Z]E[n;z‘int.mh (n Xy ]M(?SA} +E {I-a.ull’[,u;r}fg)pg] +E [t-a.uh (120 Xe)pd 2y .31m}
=1 At

= ZE[{&.;;‘”T.HLI]I {p! X (8) pag (3 :| +E [! anh'{ Wz }u,] +E [ tanh” (s, e X I Z“_?f,u;}

i=1

where the second equality follows from the Stein’s lemma on the Eftanh'(p) X,)u Z,Z,] and the
Hi t

inequality jon the E [B&llll (d X )pt Z;J!,u,}.. we obtain

last equality follows from the Stein’s lemma on Efa, X tanh" (p] X, ) (i)Z,(i)]. Applying Stein's

_ d
= E [ X0 mnn"f_pj_.‘fmuu||2] +E [Lmll.’(;;,_' X,)m] +3 BuuE [t.?mh (1 X, ),“(;)3,,“(..,}}

-~ i=1

* =~ -~
—E X, tanh” (1] Xz } {ﬁIZ, tanh”(ud Xl ] +E [laﬂll’[,{a:—f‘;}),uf]
+ B2 el peE [tamb® (] X,)] | don’t know why summation here
= E [ X, tanh” (i X)l|ps ||2] +E [mnn’(pfx,)p,] .




Approximate loss gradient by Taylor
Expansion

tanh” (1) ©) = —2p] = + O(&(2)?) where &(z) € [0, ] 7]
Lemma C.3. For any noise scale t > t' and number of samples n > n' where ' < logd and me T ( 1 2 T ) e 3 ( 1 2 T )
= tanh )| == T4y oy | = (—2p x4+ Oz —= C + iy Th

n' = O(d—s-’?,—). with high probability, the negative gradient of the diffusion model objective Ly(s¢) can anb"(u ) ZHMH pia e ( P (¢la) )) 2”#’“ Sl
be approzimated by 2pf p:,T,ut - '3pr\|2 pe. More precisely, given independent samples {4} i=1._n || 1 1% T T ( L2 T

: z)(— = T4y zpy)) — Ell—2p x| —=||iie|" 2 + 1 T
from q, generated using noise vectors {z; ¢ }iz1, n sampled from N(0,1d), we have H [ (g =) H'{ d e o)) [ L 2”' dl He T ”‘

3\, T
1 s . _ . ——— < *—\I.url\ Eranius O (2)%)a] + Eronr(us 1y [0 () ) ]
H = V(; Z Lt(-*m(l‘z._t-ﬂ-i.r))) = (zﬁfﬂzTHf — 3lpae ﬂt) ‘ < 250V/d|e || + 10] e 1P| s ||” + = %
i1 < EHMHZ Ellpf 2 llll] +lpell Eflpsf 1]
Proaf. Recall that the lati adient update on the DDPM objective is given by : i
roof. Reeall that the population gradient upda Llon 1€ rjeetive is given by - lHMHQ ]EU'LJTP]EMTHZ] el EH,JJPHOldS for- |arge noise reglme (X almost
= 2 i
—VLi(8,) = Eprnriur 1) | tanh (g o)z — —tzm_h” 1y )| 22 + tanh’ w2 o : : :
(o) = Eenitiz s [tonh(i <) (h @)l (ke 2y zz] < 10 P VA + 6l follows a standard gaussian)
— it —E,, N (g M){‘{rl.l]h (!—1'1 .'-*"f] Stel n ’S Lem ma ” Y\/hy)lt is 1(:() aﬂ()3|26. e )1) : . [D . ]
T g \ i tanh'(p, S r) where £(x) € |0, i, T
= Earr(us 1) [t:—mh(,u, x)x — 3 tanh” (g @) juel|2 2 + tank’ (1] )] o4 - I o ¢ N
anh’(p0] 2)p) apf = o) zpd — () )P )y T where £(x \ g T
— tanh’ (i 2)p zp; ¢ oy — (g @) py + O(E(z) py zpg) here £(z) € [0, by 2]

+ tanh” (1) 2V Tee] — 1y

= |[Eltant (1] x)p ] = [Elpd ws; — (u] 2w <[l (] 2
<Ellud @)l || 2 e e

Holds for large noise regime (x almost

where the last equality follows from the Stein’s lemma on E,pr(: 14) [tanh’ (1, i*')yi zz], as

Bzt [bonh (] @) w2] = By sy lbanh (] )] o + b’ (] )+t (] )] ]

Using Taylor’s theorem, we know that fOl |OWS 3 sta nda rd ga USS| 3 n)

tanh(y, ) = p z — %(ﬁ;:ﬂ)g +0(&(x)?) where £(x) € [0, g 2]

2
= tanh(u' 2)x = p' vz - q(mTf) z + O(&(z)’x) It does not follow big O definition?

o]

2
=% [E,,.,.,N(H‘-:ld,[t;mh(,u;ra'):u] — BN (43 1) [,ut TT — 3 j.tf H < ||E[g(z) .1][| < \/_”MH
Cauchy Holder

& o 1/
where the last inequality follows from H[E[;E(.J.‘)"':Em < E[|ue z?||z]] € (J'E[|,u,;rr|m]) (JE[ ||| ) 1/2

Il gee||® d+||,u;“”2 < V/d||p|®. Similarly, using Taylor’s theorem, we get

B

Holds for large noise regime (u; is small)



Approximate loss gradient by Taylor
Expansion

Sum up all Taylor approximations _
Stein’s Lemma

2 T ] v T . |_ . "l
- qf;.i.,' )z — 2;;,(;:.;—.:.']3 + py ey — (p J'J'{;;, |

T I E & 2
Er'\—.—\"[u;.!dj e’ g (1 || p2e|])

( * = 1 2 D 3 ¥ % y
= (1 + piip e (L4 lpel) = SEId @) 0] + pii i pue — AE [ g 2)?)

1T

e (L lpel®) = =2E (o 15 + 3G 1) el )

= (I + pepy

ponit e Gaussian moments
+p g g — A (L™ + (o pog)7)

Spy (g 41y e

: — dpe(py iy )

= T (2 — Alael|) + pue(L = 3 pel|?) —

Approximate Taylor approximation by another polynomials

= VEi(sp) — @uuipg T e — 3llgsell® o)

2 T, % 3 %
< || - V2is) — BlaaT (1 +Hlnl?) = 50 2 — 20l @) + af wonis — (ud 2 — |

+ |[BleaT (L + el - §(;Jav)‘*r = 2y ©) + ol wpy — (g )7 — pu

- (QHT#TTM — 3\Iﬂf\|2m) ‘

< (2007 |I” + 100l VA -+ 6]l + 20] g |l ) + 100 el ]|
< 250V/d]| st [|° + 10]| e ||| 55 ||




Angle Contraction

Lemma C.5. Suppose that the vector p; satisfies |{fit, )| > =7, and let pj denote the iterate
resulting from a single empirical gradient step with learning rate n starting from p;. Suppose that
the empirical gradient and the population gradient differ by at most €. Denote the angle between i

(resp. py) and py by 0 (resp. 0'). Then

tan #" = max (k1 tan 6, k2)

for
. 1 — 3l
1 — 3n|pel|? +n(llpf I* — 500V d3|pg]|* — 20d|| g ||?[ 1|2 — mE)
_ 5000V d3lpe|* + 20nd]| e |IP [l 1P + né -
i = and &

112 ™ el



Angle Contraction

This because in power
iteration, ', u, u* lie in
the same plane.

Because Id + F is
symmetric, the
eigenvectors are
orthogonal to each
other. Therefore, if u* is
the first eigenvector,

(Id + F)u*T < a,u’

Proof. Define fif+ as the orthogonal vector to uj in the plane of y; and pf. Note that s still lies

We have

/1 this plane, so the orthogonal vector to p} in the plane of y} and u} is also given by i+,

(@t m) (gt )

(F, fg) (F s 1t)

(i, e+ nF (e, 7)) + (i, —=nV Le(se) — nF (pe, 153)) + me

(B3, e + 0F (e, 1)) + (AL, —nV Le(s¢) — nF (e, 153)) — ne

where  F(u, u*) = (2u2"u2‘Tut - 3||ut|\2ut)

tan @ =

oo(fiit, pe) + || VLe(se) + F(ue, 17)|| + e 1)
T o1lier, me) | nl|VLe(st) + F (e, p13)|| — me

where o1 and o are the first and second eigenvalues of Id + F'(u, uy) = (1 — 3n|],ut||2)ld + 2T
given by

o1 =1+ n2u; | — 3llwl®)
o2 =1—3n|lml” -

The last inequality (C.1) follows from the fact that

(iF, e+ nF (e, 7)) = iy (1= 3l pee||*)Id + 25 g1 7 ) e

= puf (1 = 3nllpel 1A + 203 15 sy = ovpd i

because fi* is the first eigenvector of (1 — 3n]|u)|®)Id 4 2nu; 1T Recall from Lemma C.3 that the



Angle Contraction

because /i* is the first eigenvector of (1 — 3n]|u[|*)Id 4 2nu; i ", Recall from Lemma C.3 that the

This is because of assumption that deviation between the negative population gradient and the power iteration update F'(uy,puy) is

bounded by
: A A 1
pe satisfies |{fug, iy )| > 2d’ ) 4 201,512
[V Li(st) + F (e, 1i7)|| < 2500v/d|| pe||* + 107 e || 27 | <50077@\%“4'?ZOdWHHtHQHN*HQ-
e, 1) - (e, ) N t
Substituting this into Eq. (C.1), we get
oo (it me) +nllVLi(s) + F (s, )| + e where £ < 25
el

tan 8’ < 5
(g, pre) (o1 — 500nV/d3|| pel|* — 20ddn|| el | iz |~ — mE)

o 1 E:
< 22 tan 0+ = (500V@ ||l + 20dn ]l 15| + ne)

g1
where &1 2 o1 — 5000V d3||p||* — 20dn| p||? g |1? — né
) 5000V @3 ||t ||* + 20dn]| pe||* || i + né

2 (1 - nHuZ“\P) 02 ol (nl\ﬂé“HQ
= A e THE &1 nl et |2
4 ) * ~
< ( 2 500nY d®||pe|” + 20md [ e || 7] +n€)
< Imax = 2 an9, *112
&1 — nllpf]] Iz

where the last inequality uses the fact that convex combinations of two values is less than the
O

maximum of two values.



Low Noise Regime: EM algorithm

As before, we denote ji; as the eurrent iterate and g as the next iterate obtained by performing
(population) gradient descent on the DDPM objective with step size . We upper bound ||pf — uf ||
as follows:

”|”J|: — pg || = ||pe — NV pe L84 ) — pe ||
. - 1 e T
;|| [1 = I}:l[j.!; — j'I::' + "'.i'E.t'-u-.-"'..'_I'.ri:_'l':l ['[ TH.J.J.].J.UI.-I ﬂ";l — E tanh r{lr_l'fl .r]!|;:;,|2

+ tanh'(p, 2y, J'}J'] — 1 E:«-,*-."[..;;.lJ[lﬂnh’[..“:l ) ps] — .l,l,u,’f“

g L r & | i =] LN
<(1 —n) |lpe — il + r:||FJ-m_x-1-,l;.n[!ﬂﬂhi.ur x)z]|— i || + 1 Glue. i)l -

where One-step of EM

. . 1 T T A R | '
Gl py) & IE;W,-..'[P:_L.”[ == Ehzluh""[jut | |TTH [ o (tanh'(p, x)p, x)r — tanh'(p, J']I:r,-J! .

o

It remains to show G contracts.
Intuition: The first and high order derivative of Tanh decays exponentially with pu.
And different from the large noise regime, i is large in small noise regime.



Contraction of 1-D G (u, u™)

Lemma C.8 (One-dimensional version). Lef p, u* > 0, and consider|p € [e, 5";— for some constant

c. In this one-dimensional case, the function G specializes to
1 .
G, u") =E_  arrs [——tanh” w2 e + tanh'(pa ) pe?® — tanh’(pa)p| | (C.2)
Inone 1-D (s 147) = B (1) 5 ()L (px)y (px)t
case, G
contracts.

and we have
Glp, ™) < 0.01 |.”- - ;ﬁ*|
The proof uses the fact that the function G only contains first or higher-order derivatives of the
tanh function and all the derivatives of tanh decay exponential quickly as p increases. Therefore,

when p is at least a constant, we obtain the result. The complete proof of lemma C.8 is given in
Appendix F.2.

Proof of Lemma C.8. Recall that the gradient update for any pu; is given by

=V Le(sup) = G5, 15) + 1E g pv(uz 10 [tanh (T @)a] — mpsi (F.1)
We know that Bz 1a) [tanh(u; T 2)z] = pf (Bq.(2.1) of [DTZ17]) and Vi L (s;) = 0 because i : :
is a stationary point éf the regression objective of diffusion model. This imi)lies that G(uf, i) =0 Expo ne ntl a | Iy d ecay Wlth a (M)

for any puy.
Note that this proof only talks about 1D case therefore, for the purpose of this proof, we use a
to denote p and b to denote p*. In 1D, using Mean value theorem, we have
G(a,b) - Glaa) _ dGlay8)
b—a Tdg

Using the fact that G(a,a) = 0 in Eq. (F.2), we have
dG(a, §)

_ / " —3a’ 22\ 13 m
1Gla.b)| - dG((iZ,g) v-a | Mean Value Thm . NEznr(e,1) |2 tanh’(ax)az + tanh” (ax) ( 5 +a‘z 54 x tanh” (ax)

Observe that it suffices to prove ‘%‘ < 0.01 to obtain the lemma. By computing the gradient
of G, we obtain

for some ¢ € [a,b] (if a < b) (F.2)




Conclusion

* |f we perfectly build a network to fit MoG score,
* In large noise regime (small u¢), the one-step DDPM loss gradient decent
can be regarded as power Iiteration. (angle contraction)
* Proved by Taylor's expansions and remaining terms are high orders of u.
* In small noise regime (large ), the gradient decent can be regarded as
gradient EM algorithm. (amplitude contraction)
* Proved by derivatives of tanh decays exponentially with p;



