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• Denoising for 
score matching

Forward diffusion process

Density Evolution

Reverse diffusion process

Score Matching

Denosing



MoG Settings

Two gaussians with symmetric means 
and identity covariance matrix



Construct a single-layer “MLP” with Tanh 
Activation

Calculate Score Function

Construct network structure

𝜇 is the learnable parameters



Derivation

tanh 𝜇∗்𝑥 = 𝑤ଵ,௧
∗ 𝑥 + 𝑤ଶ,௧

∗ 𝑥

Tanh comes from the summation 
of the belongingness of x to the 2 
Gaussians.



Recall: EM step for MoG Modeling

E stepLatent Variable

M step



Derivation from the cited paper DTZ17

tanh 𝜇∗்𝑥 = 𝑤ଵ,௧
∗ 𝑥 + 𝑤ଶ,௧

∗ 𝑥 Tanh also comes from the summation of the belief (belongingness of x to the 2 Gaussians.)



Large Noise Regime: Power Iteration

Gradient Approximation

Angle Contraction

Power Iteration 𝜇௧
∗ is the first 

eigenvector, because it 
is the first eigenvector 

of 𝐼𝑑 and 𝜇௧
∗𝜇௧

∗்



Calculate Loss Gradient by standard 
Calculus

Take derivative on 𝜇௧
and simply expand



Simplify Loss Gradient by Stein’s Lemma
Because 𝑍௧ and 𝑋௧ are dependent random variable, 
analyzing them at the same time is difficult.

After Stein’s 
Lemma, the 2௧௛

order and 𝑍௧
are canceled

I don’t know why summation here



Approximate loss gradient by Taylor 
Expansion

c

Holds for large noise regime (𝜇௧
∗ is small)

Holds for large noise regime (x almost 
follows a standard gaussian)

Holds for large noise regime (x almost 
follows a standard gaussian)

It does not follow big O definition?

Cauchy Holder

Why it is 10 and 6.Stein’s Lemma



Approximate loss gradient by Taylor 
Expansion

Sum up all Taylor approximations

Approximate Taylor approximation by another polynomials

Stein’s Lemma

Gaussian moments



Angle Contraction



Angle Contraction

This because in power 
iteration, 𝜇ᇱ, 𝜇, 𝜇∗ lie in 
the same plane.

c
c

Because 𝐼𝑑 + 𝐹 is 
symmetric, the 
eigenvectors are 
orthogonal to each 
other. Therefore, if 𝜇∗ is 
the first eigenvector, 

Id + F 𝜇∗
೅
≤ 𝜎ଶ𝜇

∗்



Angle Contraction

This is because of assumption that



Low Noise Regime: EM algorithm

One-step of EM

It remains to show 𝐺 contracts. 
Intuition: The first and high order derivative of Tanh decays exponentially with 𝜇.
And different from the large noise regime, 𝜇 is large in small noise regime.



Contraction of 1-D 

Mean Value Thm

Exponentially decay with 𝑎 (𝜇)

In one 1-D 
case, 𝐺
contracts.



Conclusion

• If we perfectly build a network to fit MoG score,
• In large noise regime (small ௧), the one-step DDPM loss gradient decent 

can be regarded as power iteration. (angle contraction)
• Proved by Taylor's expansions and remaining terms are high orders of ௧.

• In small noise regime (large ௧), the gradient decent can be regarded as 
gradient EM algorithm. (amplitude contraction)

• Proved by derivatives of tanh decays exponentially with ௧


