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Background



Supervised Machine Learning

@ Given training examples from a sample space Z = X x Y

» formally S = {zi = (xi,yi),i=1,....,n}, z € Z
> Independently drawn from a probability measure p on Z

@ Aim to find prediction rule gw : X — ), parameterized by w € W (model space)

> linear models: gw(x) = (w, x)

> neural networks: gw(x) = or(Wror—1(Wi_1---01(W1ix)))
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Population and Empirical Risk

@ Loss function f(w; z) to measure performance of g on an example z = (x, y)

» squares loss: f(w;z) = (y — gw(x))? for regression
> hinge loss: f(w;z) = max{0,1 — ygw(x)} for binary classification

@ Population risk (testing error) and Empirical risk (training error)
1 n
F(w) = E:[f(w;2)] and Fs(w)= — ; f(w; z).

@ We aim to find the best model in the hypothesis space

wh = argmsréi‘yv F(w).



Algorithms
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@ A learning algorithm A with an

» empirical risk minimization

Algorithm Model

Iw (X)

output model A(S) e W

:A(S) = arg “52% training_error(w)

> regularized risk minimization:

A(S) = arg m

in Ltraining. lari
%{ raining_error(w) + regularizer(w) }

» gradient descent, stochastic gradient descent, stochastic gradient descent
ascent ...



Gradient Descent and Stochastic Gradient Descent

Gradient Descent (GD)

fort=1,2,...to T do
| Werr < we — 1 VFs(we) for some step sizes 7 > 0
return wr, 1 or an average of wi,...,WT1

Stochastic Gradient Descent (SGD)

fort=1,2,...to T do

Jt < random index from {1,2,..., n}
Wil + We — 1 VE(Wy; 2;,) for some step sizes n: > 0
return wr_; or an average of wi,...,Wri]

SGD uses a single example to approximate the gradient of Fs(w;)!




Excess Population Risk

@ Algorithm A often produces models with a small training error

@ This does not necessarily mean A(S) has a good prediction
Generalization gap = Test Error — Training Error
Target of analysis: excess population risk

E[F(A(S)) — F(w")] = E| F(A(S)) — Fs(A(S)) + Fs(A(S)) — Fs(w")]

generalization gap optimization error

@ generalization gap: difference between testing error and training error at A(S)

@ optimization error: difference between A(S) and w* measured by training error

We will study both the generalization and optimization of learning algorithms!




SGD

SGD uses unbiased gradient estimators

1 n
E;[Vf(we; z;,)] = - ; Vif(we; zi) = VFs(w:)
The zero-bias simplifies both the convergence and generalization analysis of SGD

@ Optimization: SGD applied to convex and smooth problems achieves the
convergence rate (Bottou et al., 2018)

E[Fs(wr) — Fs(w")] < n+ niT

@ Generalization: SGD applied to convex and smooth problems achieves the
generalization gap (Hardt et al., 2016)

T

E[F(wr) — Fs(wr)] S .

In practice, we often consider biased stochastic gradient methods (BSGMs)!




Biased Stochastic Gradient Method (BSGM)

At the t-th iteration, we build a possibly biased estimator g(wy; z;,) and update as
Wil = We — 7:8(Wt; Z;,). J

@ We consider a surrogate loss function f:W x Z — R and build
Fotw) = 23" Fwi2) (1)
S = n — 1 4i)-

@ We define the bias _
be = Ej.[g(we: ;)] — VFs(we).

Intuition: While g(wy¢; z;,) may be a biased estimator of VFs(w¢), it can be an unbiased
estimator of VFs(w;) J




Examples of BSGMs



Clipped-SGD

SGD is not robust for problems with heavy-tailed noises, e.g., training of BERT

A clipping operator (with parameter 7) is introduced to improve the robustness

clip(v, 7) := min {1, m}v (2)

Clipped-SGD uses the estimator

g(we; ;) = clip(VF(wy; ), 7). 3)
@ It introduces nontrivial bias
by = Ej, [clip(Vf(wy; 2), )] — VFs(wy)

@ by < GPTITP if we assume T, [||VF(w; 2,)|15] < GP,p € (1,2] (Zhang et al., 2020)



Zeroth-order SGD

@ Gradient calculations may be infeasible in some applications

@ Zeroth-order SGD approximates the gradient by finite difference

r

Z f(wt+u‘uf/ th) f(wfrzjt)
K I=1 H

zuzlvf(wt;zjt)

g(we; z;,) Approximated

slope \

True

[
“Z slope

where u;; ~ N (0, I4) is a random direction and
1 is a smoothing parameter.

@ It introduces nontrivial bias (Nesterov and Spokoiny, 2017)

be = Ejrulg(we; 2,)] — VFs(we)]  and  |[bel|2 S pd?.



SGD with Delayed Updates

@ In practical implementations, the gradients may not be immediately available, e.g.,
due to communication delay

] 1 : :
&, 0) L
{Worker(m): : :: } Figure in Zheng et al. (2017)
x+ §7m)
{Worker(m'): }

@ Then, we may update a model using the outdated gradient information (7 is the
delay factor)

Wil = Wt — Vf(wf*Ta th—r)7 t>7.

@ This leads to a bias
b =E;,_,[Vf(We-r,2z, )] = VFs(we) = VFs(we—r) — VFs(we).

@ The bias is of order O(7), which affects both optimization and generalization.



Decentralized SGD

@ We have m local machines with Sk = {z1 k, Z2.,, ..., Znk} in the k-th machine

@ Each local machine updates its own model and communicates with its neighbors

<]
T
1]

m N N
wi = Pgwl —neVE(we; Zx ), (4) © ()
< L E

1

where P € R™™ is a double stochastic matrix, j& ~ Unif[n]. :IM__LI
If we consider the averaged model w; = % > w¥, then =B
&)

m

_ - i k.

Wil = Wt m Z Vf(Wt ' zjﬁ,k)' (5) Figure in Zhu et al. (2023)
k=1

@ We can formulate it as a BSGM by

1 — 1 — _ 1 — _
be =By [ > VAWl z )| = D7 Vs (W) = — 3 (VFs, (wh) = VFs, (W)
k=1 k=1 k=1

1
@ The bias can be bounded by = >0, [[W¢ — We[|2, which is of order (32, 77)?



Other Examples

@ Top-k and Random-k sparsification: keeps k largest coordinates of the gradient
vector

@ Stochastic average gradient (Schmidt et al., 2017)
@ and many others (Ajalloeian and Stich, 2020; Driggs et al., 2022)

@ Existing theoretical analysis of BSGMs mainly focus on the convergence (Ajalloeian
and Stich, 2020; Driggs et al., 2022; Hu et al., 2020; Duchi et al., 2015; Nesterov and Spokoiny, 2017).

How to study the generalization behavior?




Stability Analysis of BSGMs



Uniform Stability

A randomized algorithm A is e-uniformly stable if, for any two datasets S and S’ that

differ by one example (neighboring dataset), we have

Sl:pEA[f(A(S);Z) —f(A(S);2)] <e
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Figure Taken in Kuzborskij and Lampert (2018)

If A is uniformly stable, then it is generalizable!

(Bousquet and Elisseeff, 2002)

(6)




Generalization by Uniform Stability

We say £: W — R is G-Lipschitz if [£(w) — £(w')] < G|lw — w'||2.
If A is e-uniform stable and f is G-Lipschitz, then (Hardt et al., 2016)

E[F(A(S)) — Fs(A(5))] < Ge.

(7)

Issues with Uniform Stability
@ A strong concept: consider any two neighboring datasets and any test example z
supEa[f(A(S);z) — F(A(S'); z)] <e.

@ Requires strong assumptions to control the uniform stability: Lipschitzness,
smoothness (Hardt et al., 2016)

@ Cannot show the effect of optimization in improving stability and generalization.




On-Average Model Stability

@ To address these issues, we introduce on-average model stability

S={z,2,...,2.} 2 AS)
S = {2l z,...,z.} 2 A(SY)

S={z,2,....z} Leunaien, SO ={z,2,...,2.} 2 AS?)
S'={z,2,...,2z,}
S =z, 2,...,2;} & A(S™)
On-Average Model Stability (Lei and Ying, 2020)

We say a randomized algorithm A : Z" — W is on-average model e-stable if

Es.sua[+ D IAS) - ASD)IE] < & (8)




Generalization by On-average Model stability

Smoothness, Lipschitzness and Convexity

Let £: W R. Let L > 0.
@ We say £ is L-smooth if ||[VE(w) — Vi(w')[]2 < L|lw — w'||2.
@ We say £ is convex if £(w) > 4(w') + (w — w', Vi(w')).

Generalization by On-average Model stability

If A is on-average model e-stable, then

1
generalization gap S e+ e(training error) 4,

(Lei and Ying, 2020)

(9)

v

@ If training error = 0, then generalization gap < €.

@ This is much faster than generalization gap < € (Hardt et al., 2016).



Stability of BSGMs

o Let S={z,...,2,},5 ={z,...,z}. Construct SO
o Let {w:} and {wgi)} be produced by BSGMs based on S and S,

@ Recall the definition of bias:

be = Ej,[g(we; S.)] — VFs(we) and b = E; [g(w!; S1)] — VFy (wd).

Generalized Lipschitzness assumption
E[llg(we: S.) — g(w’; S)B] < E[Allwe — wi”|3 + B,i],
E[||be — b7 3] < E[Allwe — wi” |3 + B:.i].

@ Lipschitzness plus an additional term B

@ We will verify this assumption for instantiations of BSGMs



Stability of BSGMs

Main Result

. T
Let f be convex. Let generalized Lipschitzness assumption hold. If (A+ TA) > n? <1,

t=1
then BSGM is on-average model e-stable
1 n T ZT 772 n T
2 2 i t=1"It D .
o = Z > niE[Bi] + S Z > E[B]. (12)
i=1 t=1 i=1 t=1
=Cy =G

@ It requires a convex surrogate f, which is NOT necessary f
@ To apply it, we just need to check the generalized Lipschitzness assumption!
@ If n: =1, E[B:;] < Bi and E[B: ;] < B», then

G < T’B;, G < T?p*B, = bias is more important




Key ldea in Generalized Lipschitzness Assumption

@ As we mentioned before, the bias can be bounded for various algorithms

algorithm | Clipped-SGD | Zeroth-SGD | Delayed-SGD | D-SGD

. _ T
bias? 722 p2d® 72 > n?

@ If we directly use these bounds on bias (assume bias> < B), then
¢® < some term + T21°B.

@ For good stability, it requires Tnp — 0 for which the algorithm will NOT converge!

Key Idea

Instead of considering bias, we consider the difference of bias on neighboring datasets

E[)|be — bP15] < E[Allwe — wi[3 + B, (13)

@ This allows us to establish Eq. (13) with A < B and B;; < B
@ Our stability bound depends on A and Bt,;




Applications



Stochastic Gradient Descent

@ SGD uses the estimator g(w;; zj,) = VI (w¢; z,).
@ We choose 7(w; z) = f(w; z). Then b; = 0.

Generalized Lipschitzness condition

Assume f is L-smooth. Then, the generalized Lipschitzness assumption holds with
A= L% B.;=|Vf(wez)|?/n,A= B =0. Thatis,

E[IVf(we; S) — VA(w; S 3] < E[L]lwe — w |5 + [V F(we; 2)[*/n].  (14)

v

Stability bounds

Let f be L-smooth and convex. Then SGD with 7: = 7 is on-average model e-stable:

2 < (n2 o TTT) ZT:E[FS(wt)]. (15)

n

o

@ It recovers the existing stability analysis of SGD  (Hardt et al., 2016; Lei and Ying, 2020)



Zeroth-order SGD

@ Zeroth-order SGD takes (u is a smooth parameter)

f f
g(Wt:zJ: K Z (we + pue; Zt) (we; zjt) Ue g,  Ugg N(O, Id)~
=1

@ If we choose f = f, then there is a bias which leads to a suboptimal stability bound.
@ Our key idea is to consider

f(w;z) = Eu [f(w + pu; 2)]. (16)

Let f be defined in Eq. (16) (Nesterov and Spokoiny, 2017)
@ If w— f(w; z) is convex and smooth, then w — f(w; z) is also convex and smooth.
@ We have Ey[g(w; z;,)] = VF(w; z,) for any w € W and j € [n]. That is, b = 0.




Zeroth-order SGD: Stability Bounds

Generalized Lipschitzness condition

Assume f is L-smooth. Then, the generalized Lipschitzness assumption holds with
A=(1+d/K)L>, A=B:; =0,

B:

< Vw2l qu;d3

1, .
0 S e + ;||Vf(wt;z,-)|]§.

Stability bounds

Let f be convex and smooth. If 2;1 n? <1, then Zeroth-order SGD is on-average
model e-stable

2 2 T 2 32,2
2o (n” , Tn 2 3(1 1N o wd'Ty
P (T Srtr e (L Dy £ LETE

(17)

v

@ We require Z;l n? < 1, which is satisfied by the standard choice n: =< 1/v/T

@ The existing stability analysis requires a fast-decaying n: < 1/t (Nikolakakis et al., 2022)



Zeroth-order SGD: Excess Risk Bounds

Convergence Analysis

Let f be L-smooth and convex, n: =7 < 1/L and A(S) = £ 32T wy, then

E[Fs(A(S)) — Fs(w")] < ||w ||2 + Ldy? +n(L; +N2L2d3>

(18)

Excess Risk Bounds
Let f be L-smooth, convex and take T < n, K < d,n =< l/ﬁ Then

E[F(A(S))] - F(w") S 1/v/n.

(19) |




Clipped-SGD

Clipped-SGD uses the estimator

g(wf; th) = dip(Vf(Wt; th), T)' (20)

Moment assumption on stochastic gradient

Ei[IVf(w; z;,)lI5] < G”,  where p € (1,2]. (21)

v

Generalized Lipschitzness on bias

Let moment assumption hold and f be smooth. Then

i Gzp i
E[llbe — 67115] < Z5E[llwe — wi? |5 + V£ (we; 2)13/n]- (22)

@ Much better than the existing bias b? < G*7272P in Zhang et al. (2020)

G?Pr7% < G*7*7% and G¥r *n7% « G¥27



Clipped-SGD: Stability Bounds

Generalized Lipschitzness on gradient
Let f be L-smooth. Then

E[llg(we; Si) — gw; S)3] < LCE[|lwe — w3 + |V F(we; 2:)][3/n]. (23)

v

Stability bounds of Clipped-SGD

Let moment assumption hold. Let f be convex and smooth. If (1 + T—Zp) Zthl n? <1,
then Clipped-SGD is on-average model e-stable

2

es(T+ Tn—’f) XTjE[Fs(wt)]. (24)

v

@ This matches the stability bounds of the standard SGD!

The first stability analysis of Clipped-SGD!




Clipped-SGD: Excess Risk Bounds

Convergence Analysis

Let moment assumption hold. Let f be convex and smooth. If n, =7 < 1/(3L) and
G <7, then

E[|lws 1]

% S B[ Fo(we) ~Fo(ws)] < =~

t=1

+ GPT* Py + G2 Ty,

Excess Risk Bounds

Let the moment assumption hold. Let f be convex and smooth. If we take
1 1 i
7= GTr,pxxn %2, Txn%»2 and A(S) =+ S, we, then

E[F(A(S))] - F(w") S 1/v/n.

(26)

o T GT%,U = T is also the choice in optimization (Nguyen et al., 2023)




Decentralized SGD

® We have m local machines with Sk = {z1 k, Z2,, - .., Zn,k} in the k-th machine
@ Each local machine updates its own model and communicates with its neighbors

wy = Z Pyw} — 1.V f(ws; Zky), Pe€ R™*™, j& ~ Unif[n].

Stability Bounds
Let f be convex and L-smooth. Then D-SGD with 7: =1 < 1/L is e-model stable with

<5 (mn(ln et ,,21,2) ;E[Fs(wt)], (27)

where ) is the second largest singular value of P and w; = % > e wk

Excess Risk Bounds
Let f be convex and L-smooth. Let n < l/ﬁ and T =< mn, then

~| \

. 1 1 L
E[F(A(S))] — F(w*) < T + T where A(S ; - (28)




Conclusion



Summary
Stability analysis of BSGMs

@ We introduce generalized Lipschitzness assumption

@ We develop the first general framework on the stability of BSGMs

Applications
@ Zeroth-order SGD

» We build a surrogate function to get zero bias
» We get improved stability bounds allowing much larger step sizes
@ Clipped-SGD

> We show the bias satisfies an improved generalized Lipschitzness assumption
» We develop the first stability analysis of Clipped-SGD

: ) : : : 1 1
@ Decentralized-SGD: we imply optimal risk bounds of order T ifl—A2

5

Future directions

@ Extension to nonconvex problems

Thank you!
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