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Background



Supervised Machine Learning

Given training examples from a sample space Z = X × Y
▶ formally S =

{
zi = (xi , yi ), i = 1, . . . , n

}
, zi ∈ Z

▶ Independently drawn from a probability measure ρ on Z

Aim to find prediction rule gw : X 7→ Y, parameterized by w ∈ W (model space)

▶ linear models: gw(x) = ⟨w, x⟩

▶ neural networks: gw(x) = σL(WLσL−1(WL−1 · · ·σ1(W1x)))



Population and Empirical Risk

Loss function f (w; z) to measure performance of gw on an example z = (x , y)

▶ squares loss: f (w; z) = (y − gw(x))
2 for regression

▶ hinge loss: f (w; z) = max{0, 1− ygw(x)} for binary classification

Population risk (testing error) and Empirical risk (training error)

F (w) = Ez [f (w; z)] and FS(w) =
1

n

n∑
i=1

f (w; zi ).

We aim to find the best model in the hypothesis space

w∗ = arg min
w∈W

F (w).



Algorithms

A learning algorithm A with an output model A(S) ∈ W
▶ empirical risk minimization: A(S) = arg min

w∈W
training error(w)

▶ regularized risk minimization:

A(S) = arg min
w∈W

{
training error(w) + regularizer(w)

}
▶ gradient descent, stochastic gradient descent, stochastic gradient descent

ascent ...



Gradient Descent and Stochastic Gradient Descent

Gradient Descent (GD)

for t = 1, 2, . . . to T do
wt+1 ← wt − ηt∇FS(wt) for some step sizes ηt > 0

return wT+1 or an average of w1, . . . ,wT+1

Stochastic Gradient Descent (SGD)

for t = 1, 2, . . . to T do
jt ← random index from {1, 2, . . . , n}
wt+1 ← wt − ηt∇f (wt ; zjt ) for some step sizes ηt > 0

return wT+1 or an average of w1, . . . ,wT+1

SGD uses a single example to approximate the gradient of FS(wt)!



Excess Population Risk

Algorithm A often produces models with a small training error

This does not necessarily mean A(S) has a good prediction

Generalization gap = Test Error− Training Error

Target of analysis: excess population risk

E
[
F (A(S))− F (w∗)

]
= E

[
F (A(S))− FS(A(S))︸ ︷︷ ︸

generalization gap

+FS(A(S))− FS(w
∗)︸ ︷︷ ︸

optimization error

]

1 generalization gap: difference between testing error and training error at A(S)

2 optimization error: difference between A(S) and w∗ measured by training error

We will study both the generalization and optimization of learning algorithms!



SGD

SGD uses unbiased gradient estimators

Ejt [∇f (wt ; zjt )] =
1

n

n∑
i=1

∇f (wt ; zi ) = ∇FS(wt)

The zero-bias simplifies both the convergence and generalization analysis of SGD

Optimization: SGD applied to convex and smooth problems achieves the
convergence rate (Bottou et al., 2018)

E[FS(wT )− FS(w
∗)] ≲ η +

1

ηT

Generalization: SGD applied to convex and smooth problems achieves the
generalization gap (Hardt et al., 2016)

E[F (wT )− FS(wT )] ≲
ηT

n
.

In practice, we often consider biased stochastic gradient methods (BSGMs)!



Biased Stochastic Gradient Method (BSGM)

At the t-th iteration, we build a possibly biased estimator g(wt ; zjt ) and update as

wt+1 = wt − ηtg(wt ; zjt ).

We consider a surrogate loss function f̃ :W ×Z 7→ R and build

F̃S(w) :=
1

n

n∑
i=1

f̃ (w; zi ). (1)

We define the bias
bt = Ejt [g(wt ; zjt )]−∇F̃S(wt).

Intuition: While g(wt ; zjt ) may be a biased estimator of ∇FS(wt), it can be an unbiased

estimator of ∇F̃S(wt)



Examples of BSGMs



Clipped-SGD

SGD is not robust for problems with heavy-tailed noises, e.g., training of BERT

A clipping operator (with parameter τ) is introduced to improve the robustness

clip(v, τ) := min
{
1,

τ

∥v∥2

}
v. (2)

Clipped-SGD uses the estimator

g(wt ; zjt ) = clip(∇f (wt ; zjt ), τ). (3)

It introduces nontrivial bias

bt = Ejt [clip(∇f (wt ; zjt ), τ)]−∇FS(wt)

bt ≲ G pτ 1−p if we assume Ejt [∥∇f (w; zjt )∥
p
2 ] ≤ G p, p ∈ (1, 2] (Zhang et al., 2020)



Zeroth-order SGD

Gradient calculations may be infeasible in some applications

Zeroth-order SGD approximates the gradient by finite difference

g(wt ; zjt ) =
1

K

K∑
l=1

f (wt + µut,l ; zjt )− f (wt ; zjt )

µ︸ ︷︷ ︸
≈u⊤

t,l
∇f (wt ;Zjt )

ut,l ,

where ut,l ∼ N (0, Id) is a random direction and
µ is a smoothing parameter.

It introduces nontrivial bias (Nesterov and Spokoiny, 2017)

bt = Ejt ,u[g(wt ; zjt )]−∇FS(wt)] and ∥bt∥2 ≲ µd
3
2 .



SGD with Delayed Updates

In practical implementations, the gradients may not be immediately available, e.g.,
due to communication delay

Figure in Zheng et al. (2017)

Then, we may update a model using the outdated gradient information (τ is the
delay factor)

wt+1 = wt −∇f (wt−τ , zjt−τ ), t > τ.

This leads to a bias

bt = Ejt−τ [∇f (wt−τ , zjt−τ )]−∇FS(wt) = ∇FS(wt−τ )−∇FS(wt).

The bias is of order O(τ), which affects both optimization and generalization.



Decentralized SGD

We have m local machines with Sk = {z1,k , z2,k , . . . , zn,k} in the k-th machine

Each local machine updates its own model and communicates with its neighbors

wk
t =

m∑
j=1

Pkjw
j
t − ηt∇f (wk

t ; zjkt ,k), (4)

where P ∈ Rm×m is a double stochastic matrix, jkt ∼ Unif[n].
If we consider the averaged model w̄t =

1
m

∑m
k=1 w

k
t , then

w̄t+1 = w̄t −
ηt
m

m∑
k=1

∇f (wk
t ; zjkt ,k). (5)

Figure in Zhu et al. (2023)

We can formulate it as a BSGM by

bt = Ejkt

[ 1

m

m∑
k=1

∇f (wk
t ; zjkt ,k)

]
− 1

m

m∑
k=1

∇FSk (w̄t) =
1

m

m∑
k=1

(
∇FSk (w

k
t )−∇FSk (w̄t)

)
.

The bias can be bounded by 1
m

∑m
k=1 ∥w̄

k
t − w̄t∥2, which is of order

(∑t
j=1 η

2
j

) 1
2



Other Examples

Top-k and Random-k sparsification: keeps k largest coordinates of the gradient
vector

Stochastic average gradient (Schmidt et al., 2017)

and many others (Ajalloeian and Stich, 2020; Driggs et al., 2022)

Existing theoretical analysis of BSGMs mainly focus on the convergence (Ajalloeian

and Stich, 2020; Driggs et al., 2022; Hu et al., 2020; Duchi et al., 2015; Nesterov and Spokoiny, 2017).

How to study the generalization behavior?



Stability Analysis of BSGMs



Uniform Stability

A randomized algorithm A is ϵ-uniformly stable if, for any two datasets S and S ′ that
differ by one example (neighboring dataset), we have (Bousquet and Elisseeff, 2002)

sup
z

EA

[
f (A(S); z)− f (A(S ′); z)

]
≤ ϵ. (6)

Figure Taken in Kuzborskij and Lampert (2018)

If A is uniformly stable, then it is generalizable!



Generalization by Uniform Stability

We say ℓ :W 7→ R is G -Lipschitz if |ℓ(w)− ℓ(w′)| ≤ G∥w − w′∥2.

If A is ϵ-uniform stable and f is G -Lipschitz, then (Hardt et al., 2016)

E[F (A(S))− FS(A(S))] ≤ Gϵ. (7)

Issues with Uniform Stability

A strong concept: consider any two neighboring datasets and any test example z

sup
z

EA

[
f (A(S); z)− f (A(S ′); z)

]
≤ ϵ.

Requires strong assumptions to control the uniform stability: Lipschitzness,
smoothness (Hardt et al., 2016)

Cannot show the effect of optimization in improving stability and generalization.



On-Average Model Stability

To address these issues, we introduce on-average model stability

S = {z1, z2, . . . , zn}
S ′ = {z ′1, z ′2, . . . , z ′n}

perturbation
======⇒

S = {z1, z2, . . . , zn}
A−→ A(S)

S (1) = {z ′1, z2, . . . , zn}
A−→ A(S (1))

S (2) = {z1, z ′2, . . . , zn}
A−→ A(S (2))

...

S (n) = {z1, z2, . . . , z ′n}
A−→ A(S (n))

On-Average Model Stability (Lei and Ying, 2020)

We say a randomized algorithm A : Zn 7→ W is on-average model ϵ-stable if

ES,S′,A

[1
n

n∑
i=1

∥A(S)− A(S (i))∥22
]
≤ ϵ2. (8)



Generalization by On-average Model stability

Smoothness, Lipschitzness and Convexity
Let ℓ :W 7→ R. Let L ≥ 0.

We say ℓ is L-smooth if ∥∇ℓ(w)−∇ℓ(w′)∥2 ≤ L∥w − w′∥2.
We say ℓ is convex if ℓ(w) ≥ ℓ(w′) + ⟨w − w′,∇ℓ(w′)⟩.

Generalization by On-average Model stability (Lei and Ying, 2020)

If A is on-average model ϵ-stable, then

generalization gap ≲ ϵ2 + ϵ
(
training error

) 1
2 . (9)

If training error = 0, then generalization gap ≲ ϵ2.

This is much faster than generalization gap ≲ ϵ (Hardt et al., 2016).



Stability of BSGMs

Let S = {z1, . . . , zn}, S ′ = {z ′1, . . . , z ′n}. Construct S (i).

Let {wt} and {w(i)
t } be produced by BSGMs based on S and S (i).

Recall the definition of bias:

bt = Ejt [g(wt ; Sjt )]−∇F̃S(wt) and b
(i)
t = Ejt [g(w

(i)
t ; S

(i)
jt
)]−∇F̃S(i)(w

(i)
t ).

Generalized Lipschitzness assumption

E
[
∥g(wt ; Sjt )− g(w(i)

t ; S
(i)
jt
)∥22

]
≤ E

[
A∥wt − w(i)

t ∥
2
2 + Bt,i

]
, (10)

E
[
∥bt − b

(i)
t ∥

2
2

]
≤ E

[
Ā∥wt − w(i)

t ∥
2
2 + B̄t,i

]
. (11)

Lipschitzness plus an additional term B

We will verify this assumption for instantiations of BSGMs



Stability of BSGMs

Main Result

Let f̃ be convex. Let generalized Lipschitzness assumption hold. If
(
A+ TĀ

) T∑
t=1

η2
t ≲ 1,

then BSGM is on-average model ϵ-stable

ϵ2 ≲
1

n

n∑
i=1

T∑
t=1

η2
tE[Bt,i ]︸ ︷︷ ︸

:=C1

+

∑T
t=1 η

2
t

n

n∑
i=1

T∑
t=1

E[B̄t,i ]︸ ︷︷ ︸
:=C2

. (12)

It requires a convex surrogate f̃ , which is NOT necessary f

To apply it, we just need to check the generalized Lipschitzness assumption!

If ηt = η,E[Bt,i ] ≤ B1 and E[B̄t,i ] ≤ B2, then

C1 ≤ Tη2B1, C2 ≤ T 2η2B2 =⇒ bias is more important



Key Idea in Generalized Lipschitzness Assumption

As we mentioned before, the bias can be bounded for various algorithms

algorithm Clipped-SGD Zeroth-SGD Delayed-SGD D-SGD

bias2 τ 2−2p µ2d6 τ 2 ∑T
t=1 η

2
t

If we directly use these bounds on bias (assume bias2 ≤ B), then

ϵ2 ≲ some term + T 2η2B.

For good stability, it requires Tη → 0 for which the algorithm will NOT converge!

Key Idea
Instead of considering bias, we consider the difference of bias on neighboring datasets

E
[
∥bt − b

(i)
t ∥

2
2

]
≤ E

[
Ā∥wt − w(i)

t ∥
2
2 + B̄t,i

]
. (13)

This allows us to establish Eq. (13) with Ā≪ B and B̄t,i ≪ B

Our stability bound depends on Ā and B̄t,i



Applications



Stochastic Gradient Descent

SGD uses the estimator g(wt ; zjt ) = ∇f (wt ; zjt ).

We choose f̃ (w; z) = f (w; z). Then bt = 0.

Generalized Lipschitzness condition
Assume f is L-smooth. Then, the generalized Lipschitzness assumption holds with
A = L2,Bt,i = ∥∇f (wt ; zi )∥2/n, Ā = B̄ = 0. That is,

E
[
∥∇f (wt ; Sjt )−∇f (w

(i)
t ; S

(i)
jt
)∥22

]
≤ E

[
L2∥wt − w(i)

t ∥
2
2 + ∥∇f (wt ; zi )∥2/n

]
. (14)

Stability bounds
Let f be L-smooth and convex. Then SGD with ηt = η is on-average model ϵ-stable:

ϵ2 ≲
(η2

n
+

Tη2

n2

) T∑
t=1

E[FS(wt)]. (15)

It recovers the existing stability analysis of SGD (Hardt et al., 2016; Lei and Ying, 2020)



Zeroth-order SGD

Zeroth-order SGD takes (µ is a smooth parameter)

g(wt ; zjt ) =
1

K

K∑
l=1

f (wt + µut,l ; zjt )− f (wt ; zjt )

µ
ut,l , ut,l ∼ N (0, Id) .

If we choose f̃ = f , then there is a bias which leads to a suboptimal stability bound.

Our key idea is to consider

f̃ (w; z) = Eu

[
f (w + µu; z)

]
. (16)

Let f̃ be defined in Eq. (16). (Nesterov and Spokoiny, 2017)

If w 7→ f (w; z) is convex and smooth, then w 7→ f̃ (w; z) is also convex and smooth.

We have Eu[g(w; zjt )] = ∇f̃ (w; zjt ) for any w ∈ W and j ∈ [n]. That is, bt = 0.



Zeroth-order SGD: Stability Bounds

Generalized Lipschitzness condition
Assume f is L-smooth. Then, the generalized Lipschitzness assumption holds with
A = (1 + d/K)L2, Ā = B̄t,i = 0,

Bt,i ≲
d∥∇f (wt ; zi )∥22

Kn
+

µ2L2d3

K
+

1

n

∥∥∇f̃ (wt ; zi )
∥∥2

2
.

Stability bounds

Let f be convex and smooth. If
∑T

t=1 η
2
t ≲ 1, then Zeroth-order SGD is on-average

model ϵ-stable

ϵ2 ≲
(η2

n
+

Tη2

n2

) T∑
t=1

E[FS(wt)] + µ2d3
(1

n
+

1

K

)
Tη2 +

µ2d3T 2η2

n2
. (17)

We require
∑T

t=1 η
2
t ≲ 1, which is satisfied by the standard choice ηt ≍ 1/

√
T

The existing stability analysis requires a fast-decaying ηt ≲ 1/t (Nikolakakis et al., 2022)



Zeroth-order SGD: Excess Risk Bounds

Convergence Analysis

Let f be L-smooth and convex, ηt = η ≲ 1/L and A(S) = 1
T

∑T
t=1 wt , then

E[FS(A(S))− FS(w
∗)] ≲

∥w∗∥22
Tη

+ Ldµ2 + η
(Ld
K

+ µ2L2d3
)

(18)

Excess Risk Bounds

Let f be L-smooth, convex and take T ≍ n,K ≍ d , η ≍ 1/
√
T . Then

E[F (A(S))]− F (w∗) ≲ 1/
√
n. (19)



Clipped-SGD

Clipped-SGD uses the estimator

g(wt ; zjt ) = clip(∇f (wt ; zjt ), τ). (20)

Moment assumption on stochastic gradient

Ejt [∥∇f (w; zjt )∥
p
2 ] ≤ G p, where p ∈ (1, 2]. (21)

Generalized Lipschitzness on bias
Let moment assumption hold and f be smooth. Then

E
[
∥bt − b

(i)
t ∥

2
2

]
≤ G 2p

τ 2p
E
[
∥wt − w(i)

t ∥
2
2 + ∥∇f (wt ; zi )∥22/n2]. (22)

Much better than the existing bias b2
t ≲ G 2pτ 2−2p in Zhang et al. (2020)

G 2pτ−2p ≪ G 2pτ 2−2p and G 2pτ−2pn−2 ≪ G 2pτ 2−2p



Clipped-SGD: Stability Bounds

Generalized Lipschitzness on gradient
Let f be L-smooth. Then

E
[
∥g(wt ; Sjt )− g(w(i)

t ; S
(i)
jt
)∥22

]
≤ L2E

[
∥wt − w(i)

t ∥
2
2 + ∥∇f (wt ; zi )∥22/n

]
. (23)

Stability bounds of Clipped-SGD

Let moment assumption hold. Let f be convex and smooth. If
(
1 + T

τ2p

)∑T
t=1 η

2
t ≲ 1,

then Clipped-SGD is on-average model ϵ-stable

ϵ2 ≲
(η2

n
+

Tη2

n2

) T∑
t=1

E[FS(wt)]. (24)

This matches the stability bounds of the standard SGD!

The first stability analysis of Clipped-SGD!



Clipped-SGD: Excess Risk Bounds

Convergence Analysis

Let moment assumption hold. Let f be convex and smooth. If ηt = η ≤ 1/(3L) and
G ≲ τ , then

1

T

T∑
t=1

E
[
FS(wt)−FS(wS)

]
≲

E
[
∥wS∥22

]
Tη

+ G pτ 2−pη + G 2pτ 2−2pTη. (25)

Excess Risk Bounds
Let the moment assumption hold. Let f be convex and smooth. If we take

τ ≍ GT
1
p , η ≍ n− 1

2p−2 ,T ≍ n
p

2p−2 and A(S) = 1
T

∑T
t=1 wt , then

E[F (A(S))]− F (w∗) ≲ 1/
√
n. (26)

τ ≍ GT
1
p , η ≍ T− 1

p is also the choice in optimization (Nguyen et al., 2023)



Decentralized SGD
We have m local machines with Sk = {z1,k , z2,k , . . . , zn,k} in the k-th machine

Each local machine updates its own model and communicates with its neighbors

wk
t =

m∑
j=1

Pkjw
j
t − ηt∇f (wk

t ; zjkt ,k), P ∈ Rm×m, jkt ∼ Unif[n].

Stability Bounds

Let f be convex and L-smooth. Then D-SGD with ηt = η ≲ 1/L is ϵ-model stable with

ϵ2 ≲
( η3

mn(1− λ)2
+

Tη2

m2n2

) T∑
t=1

E[FS(w̄t)], (27)

where λ is the second largest singular value of P and w̄t =
1
m

∑m
k=1 w

k
t .

Excess Risk Bounds

Let f be convex and L-smooth. Let η ≍ 1/
√
T and T ≍ mn, then

E[F (A(S))]− F (w∗) ≲
1

(1− λ)2mn
+

1√
mn

, where A(S) = 1

T

T∑
t=1

w̄t . (28)



Conclusion



Summary
Stability analysis of BSGMs

We introduce generalized Lipschitzness assumption

We develop the first general framework on the stability of BSGMs

Applications

Zeroth-order SGD

▶ We build a surrogate function to get zero bias
▶ We get improved stability bounds allowing much larger step sizes

Clipped-SGD

▶ We show the bias satisfies an improved generalized Lipschitzness assumption
▶ We develop the first stability analysis of Clipped-SGD

Decentralized-SGD: we imply optimal risk bounds of order 1√
mn

if 1− λ ≳ 1√
mn

Future directions

Extension to nonconvex problems

Thank you!
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