
Token Selection in the Self-Attention Mechanism:
Case Studies and Theoretical Understanding

Yuan Cao

The University of Hong Kong

01/29

Zihao Li, Cheng Gao, Yihan He, Chenyang Zhang, Xuran Meng, Wei Shi,

Han Liu, Jason Klusowski, Jianqing Fan, Mengdi Wang

Joint work with:

Success of transformers

02/29

Theoretical understanding of transformers is limited

03/29

Powerful language
model

[Vaswani et al. 2017]

Large amount of natural
language data

+ =

Theoretical understanding of transformers is limited

03/29
Optimization/learning guarantees?

Powerful language
model

[Vaswani et al. 2017]

Large amount of natural
language data

+ =

Theoretical understanding of transformers is limited

03/29
Optimization/learning guarantees? Interpretability?

Powerful language
model

[Vaswani et al. 2017]

Large amount of natural
language data

+ =

We consider…

04/29

Simple transformer + = ?
Nearest neighbor, group-sparse classification, random walk

Data following classic
statistical models

We consider…

04/29

Simple transformer + = ?
Nearest neighbor, group-sparse classification, random walk

Data following classic
statistical models

By considering such settings, we aim to understand transformers’:

We consider…

04/29

Compatibility with classic models?

Simple transformer + = ?
Nearest neighbor, group-sparse classification, random walk

Data following classic
statistical models

By considering such settings, we aim to understand transformers’:

We consider…

04/29

Compatibility with classic models?

Adaptivity to a variety of classic tasks?

Simple transformer + = ?
Nearest neighbor, group-sparse classification, random walk

Data following classic
statistical models

By considering such settings, we aim to understand transformers’:

We consider…

04/29

Compatibility with classic models?

Adaptivity to a variety of classic tasks?

Capability to capture underlying statistical structures?

Simple transformer + = ?
Nearest neighbor, group-sparse classification, random walk

Data following classic
statistical models

By considering such settings, we aim to understand transformers’:

We consider…

04/29

Compatibility with classic models?

Adaptivity to a variety of classic tasks?

Capability to capture underlying statistical structures?

Simple transformer + = ?
Nearest neighbor, group-sparse classification, random walk

Data following classic
statistical models

By considering such settings, we aim to understand transformers’:

We will give learning guarantees & interpretations of the trained model.

Overview

Transformers as in-context one-nearest neighbor predictors

Transformers as group-sparse linear predictors

Transformers as random walk predictors

Zihao Li, Yuan Cao, Cheng Gao, Yihan He, Han Liu, Jason Klusowski, Jianqing Fan, and Mengdi
Wang. "One-layer transformer provably learns one-nearest neighbor in context." NeurIPS 2024

Chenyang Zhang, Xuran Meng, and Yuan Cao. "Transformer learns optimal variable selection in
group-sparse classification." ICLR 2025

Wei Shi and Yuan Cao. "Towards Understanding Transformers in Learning Random Walks.”
submitted.

05/29

Transformers Learn One-Nearest Neighbor In Context

06/29

In context learning
In Context Learning (ICL). Transformers can solve tasks solely relying on task-specific prompts,
without the need for fine-tuning.

07/29

In context learning
In Context Learning (ICL). Transformers can solve tasks solely relying on task-specific prompts,
without the need for fine-tuning.

07/29

A classic theoretical setup: in-context linear regression [Zhang et al., 2023, Bai et al. 2024, …]

In context learning
In Context Learning (ICL). Transformers can solve tasks solely relying on task-specific prompts,
without the need for fine-tuning.

07/29

A classic theoretical setup: in-context linear regression [Zhang et al., 2023, Bai et al. 2024, …]

H =
x1 x2 … xN xquery
y1 y2 … yN 0
p1 p2 … pN pquery

Input matrix:

In context learning
In Context Learning (ICL). Transformers can solve tasks solely relying on task-specific prompts,
without the need for fine-tuning.

07/29

A classic theoretical setup: in-context linear regression [Zhang et al., 2023, Bai et al. 2024, …]

H =
x1 x2 … xN xquery
y1 y2 … yN 0
p1 p2 … pN pquery

Input matrix:
xi, xquery ∈ ℝd

In context learning
In Context Learning (ICL). Transformers can solve tasks solely relying on task-specific prompts,
without the need for fine-tuning.

07/29

A classic theoretical setup: in-context linear regression [Zhang et al., 2023, Bai et al. 2024, …]

H =
x1 x2 … xN xquery
y1 y2 … yN 0
p1 p2 … pN pquery

Input matrix:
xi, xquery ∈ ℝd

“Positional encoding”

In context learning
In Context Learning (ICL). Transformers can solve tasks solely relying on task-specific prompts,
without the need for fine-tuning.

07/29

A classic theoretical setup: in-context linear regression [Zhang et al., 2023, Bai et al. 2024, …]

H =
x1 x2 … xN xquery
y1 y2 … yN 0
p1 p2 … pN pquery

Input matrix:

Output: [self-attention(H)]d+1,N+1

xi, xquery ∈ ℝd

“Positional encoding”

In context learning
In Context Learning (ICL). Transformers can solve tasks solely relying on task-specific prompts,
without the need for fine-tuning.

07/29

A classic theoretical setup: in-context linear regression [Zhang et al., 2023, Bai et al. 2024, …]

H =
x1 x2 … xN xquery
y1 y2 … yN 0
p1 p2 … pN pquery

Input matrix:

Output: [self-attention(H)]d+1,N+1

xi, xquery ∈ ℝd

“Positional encoding”

In context learning
In Context Learning (ICL). Transformers can solve tasks solely relying on task-specific prompts,
without the need for fine-tuning.

07/29

A classic theoretical setup: in-context linear regression [Zhang et al., 2023, Bai et al. 2024, …]

H =
x1 x2 … xN xquery
y1 y2 … yN 0
p1 p2 … pN pquery

Input matrix:

Output: [self-attention(H)]d+1,N+1

The desired output should give the result of:

(i) performing linear regression on and obtain linear model ;{(xi, yi)}N
i=1 ŵ

(ii) calculating the predicted value .⟨ŵ, xquery⟩

xi, xquery ∈ ℝd

“Positional encoding”

In context learning
In Context Learning (ICL). Transformers can solve tasks solely relying on task-specific prompts,
without the need for fine-tuning.

07/29

A classic theoretical setup: in-context linear regression [Zhang et al., 2023, Bai et al. 2024, …]

H =
x1 x2 … xN xquery
y1 y2 … yN 0
p1 p2 … pN pquery

Input matrix:

Output: [self-attention(H)]d+1,N+1

The desired output should give the result of:

(i) performing linear regression on and obtain linear model ;{(xi, yi)}N
i=1 ŵ

(ii) calculating the predicted value .⟨ŵ, xquery⟩

xi, xquery ∈ ℝd

“Positional encoding”

In-context linear regression

In context learning
In Context Learning (ICL). Transformers can solve tasks solely relying on task-specific prompts,
without the need for fine-tuning.

07/29

A classic theoretical setup: in-context linear regression [Zhang et al., 2023, Bai et al. 2024, …]

H =
x1 x2 … xN xquery
y1 y2 … yN 0
p1 p2 … pN pquery

Input matrix:

Output: [self-attention(H)]d+1,N+1

The desired output should give the result of:

(i) performing linear regression on and obtain linear model ;{(xi, yi)}N
i=1 ŵ

(ii) calculating the predicted value .⟨ŵ, xquery⟩

xi, xquery ∈ ℝd

“Positional encoding”

Can transformers be trained to perform one-nearest neighbor prediction?

In-context linear regression

In-context one-nearest neighbor prediction

H = [h1, h2, …, hN, hquery] =
x1 x2 … xN xquery
y1 y2 … yN 0
0 0 … 0 1

∈ ℝ(d+2)×(N+1),Input matrix:

08/29

In-context one-nearest neighbor prediction

Response: result of one nearest neighbor prediction

yi*, i* = arg min
j∈[N]

∥xquery − xj∥2.

H = [h1, h2, …, hN, hquery] =
x1 x2 … xN xquery
y1 y2 … yN 0
0 0 … 0 1

∈ ℝ(d+2)×(N+1),Input matrix:

08/29

In-context one-nearest neighbor prediction

• i.i.d. sampled from
• ,

•

xi ∈ ℝd : U()d−1)
yi ∈ {±1} : *[yiyj |x1:N] = 0, *[y2

i |x1:N] = 1
ℙ(y1:N |x1:N) = ℙ(y1:N | − x1:N)

We suppose that the data are drawn from a distribution satisfying:

Response: result of one nearest neighbor prediction

yi*, i* = arg min
j∈[N]

∥xquery − xj∥2.

H = [h1, h2, …, hN, hquery] =
x1 x2 … xN xquery
y1 y2 … yN 0
0 0 … 0 1

∈ ℝ(d+2)×(N+1),Input matrix:

08/29

One-layer transformer model

self-attention(H) = H ⋅ softmax(H⊤WH),
fW(H) = [self-attention(H)]d+1,N+1

Self-attention layer with the value matrix fixed as identity:

09/29

One-layer transformer model

self-attention(H) = H ⋅ softmax(H⊤WH),
fW(H) = [self-attention(H)]d+1,N+1

Self-attention layer with the value matrix fixed as identity:

09/29

We consider minimizing the population square loss with gradient descent:

L(W) = 1
2 ⋅ *{xi,yi}i∈[N],xquery[(fW(H) − yi*)2] .

W(t+1) − W(t) = η ⋅ ∇WL(W(t)), W(0) = (
0(d+1)×(d+1) 0d+1

0d+1 −σ) .

The constant serves as a mask to prevent the query from attending to itself.σ > 0

Loss function:

Gradient descent:

One-layer transformer learns 1NN in context
Theorem. Suppose that

Then converges to zero.L(W(t))

The mask in the initialization satisfies ,σ σ = Ω(poly(d))
The length of context satisfies ,N = Ω(d log d)

10/29

One-layer transformer learns 1NN in context
Theorem. Suppose that

Then converges to zero.L(W(t))

The mask in the initialization satisfies ,σ σ = Ω(poly(d))
The length of context satisfies ,N = Ω(d log d)

One-layer transformers can be trained to perform in-context one-nearest neighbor prediction.

10/29

One-layer transformer learns 1NN in context
Theorem. Suppose that

Then converges to zero.L(W(t))

The mask in the initialization satisfies ,σ σ = Ω(poly(d))
The length of context satisfies ,N = Ω(d log d)

One-layer transformers can be trained to perform in-context one-nearest neighbor prediction.

if and only ifL(W) = 0 softmax(H⊤Whquery)) ≡ ei*

fW(H) = [y1, …, yN, 0] ⋅ softmax(H⊤Whquery) .Predictor:

Target: yi*, i* = arg min
j∈[N]

∥xquery − xj∥2.

Note that…

10/29

One-layer transformer learns 1NN in context
Theorem. Suppose that

Then converges to zero.L(W(t))

The mask in the initialization satisfies ,σ σ = Ω(poly(d))
The length of context satisfies ,N = Ω(d log d)

The transformer can be trained to perform appropriate token selection!

One-layer transformers can be trained to perform in-context one-nearest neighbor prediction.

if and only ifL(W) = 0 softmax(H⊤Whquery)) ≡ ei*

fW(H) = [y1, …, yN, 0] ⋅ softmax(H⊤Whquery) .Predictor:

Target: yi*, i* = arg min
j∈[N]

∥xquery − xj∥2.

Note that…

10/29

One-layer transformer learns 1NN in context
Theorem. Suppose that

Then converges to zero.L(W(t))

The mask in the initialization satisfies ,σ σ = Ω(poly(d))
The length of context satisfies ,N = Ω(d log d)

The transformer can be trained to perform appropriate token selection!

One-layer transformers can be trained to perform in-context one-nearest neighbor prediction.

if and only ifL(W) = 0 softmax(H⊤Whquery)) ≡ ei*

fW(H) = [y1, …, yN, 0] ⋅ softmax(H⊤Whquery) .Predictor:

Target: yi*, i* = arg min
j∈[N]

∥xquery − xj∥2.

Note that…

10/29

“Nearest neighbor selector”

Prediction performance under distribution shift

Theorem. For any data satisfying , , and|yi | ≤ R xi ∈)d−1

it holds that

 for all with ,∥xj − xquery∥2
2 ≥ ∥xi* − xquery∥2

2 + δ j yj ≠ yi*

Test loss ≤ O(R2N2T−poly(N,d)δ) .

11/29

We also study the performance of the transformer trained by gradient descent iterations on
new test data with distribution shift.

T

Tr
ai

ni
ng

 lo
ss

Te
st

 lo
ss

Gradient descent iterations Gradient descent iterations

Prediction performance under distribution shiftTraining loss under uniform distribution over the sphere
Experiments

Training (left) and test loss (right) curves under gradient descent, with different dimensions and context sizes. The
test contexts are generated with a boundary separation of .δ = 0.1 12/29

Transformers Learn Optimal Variable Selection in
Group-Sparse Classification

13/29

Group-sparse linear classification

Consider a classification task: , .x ∼ N(0, σ2
x ⋅ Ip) y = sign(⟨x, β*⟩)

14/29

Group-sparse linear classification

Consider a classification task: , .x ∼ N(0, σ2
x ⋅ Ip) y = sign(⟨x, β*⟩)

Suppose that index sets give a predefined partition of .G1, …, GD {1,…, p}

14/29

Group-sparse linear classification

Consider a classification task: , .x ∼ N(0, σ2
x ⋅ Ip) y = sign(⟨x, β*⟩)

Suppose that index sets give a predefined partition of .G1, …, GD {1,…, p}

The learning problem is “group sparse” if satisfies thatβ*

supp(β*) := {k ∈ [p] : [β*]k ≠ 0} ⊂ G*j ,

where is the index of label-relevant group.j* ∈ [D]

14/29

Solving group-sparse classification with transformers

where each column .xj = [x]Gj
∼ 6(0, σ2

x Id)

Let with denoting the dimension of each group. We can then reshape
the feature vector into

p = dD d
x

X = [x1, x2, …, xD],

15/29

Solving group-sparse classification with transformers

where each column .xj = [x]Gj
∼ 6(0, σ2

x Id)

Let with denoting the dimension of each group. We can then reshape
the feature vector into

p = dD d
x

The desired output is then

y = sign(⟨xj*, v*⟩),

where .v* = [β*]Gj*
∈ ℝd

X = [x1, x2, …, xD],

15/29

Solving group-sparse classification with transformers

where each column .xj = [x]Gj
∼ 6(0, σ2

x Id)

Let with denoting the dimension of each group. We can then reshape
the feature vector into

p = dD d
x

The desired output is then

y = sign(⟨xj*, v*⟩),

where .v* = [β*]Gj*
∈ ℝd

X = [x1, x2, …, xD],

Label

15/29

Solving group-sparse classification with transformers

where each column .xj = [x]Gj
∼ 6(0, σ2

x Id)

Let with denoting the dimension of each group. We can then reshape
the feature vector into

p = dD d
x

The desired output is then

y = sign(⟨xj*, v*⟩),

where .v* = [β*]Gj*
∈ ℝd

X = [x1, x2, …, xD],

Label

pj ∈ ℝD
+ positional encodings

H = [h1, h2, …, hD] = [x1 x2 … xD
p1 p2 … pD] ∈ ℝ(d+D)×D .Input matrix:

15/29

One-layer transformer
Consider a scalar-output one-layer transformer model:

f(H, v, W) =
D

∑
j=1

v⊤Hsoftmax(H⊤Whj)

16/29

One-layer transformer
Consider a scalar-output one-layer transformer model:

f(H, v, W) =
D

∑
j=1

v⊤Hsoftmax(H⊤Whj)

Population cross-entropy loss:

L(v, W) = *(X,y)[ℓ(y ⋅ f(H, v, W))],
where is the cross-entropy loss.ℓ(a) = log(1 + exp(−a))

16/29

One-layer transformer
Consider a scalar-output one-layer transformer model:

f(H, v, W) =
D

∑
j=1

v⊤Hsoftmax(H⊤Whj)

Population cross-entropy loss:

L(v, W) = *(X,y)[ℓ(y ⋅ f(H, v, W))],
where is the cross-entropy loss.ℓ(a) = log(1 + exp(−a))

Gradient descent:

v(t+1) = v(t) − η∇vL(v(t), W(t)); W(t+1) = W(t) − η∇WL(v(t), W(t)),
with zero initialization: , .v(0) = 0d+D W(0) = 0(d+D)×(d+D) 16/29

Transformers can solve group-sparse linear classification
Theorem. For any , suppose that , , .
Then there exists

ϵ > 0 D = ω(log2(1/ϵ)) d ≤ O(poly(D)) σx, η = Θ(1)

such that the following conclusions hold:

T* = Θ(D3 ∨ 1
D3ϵ3),

17/29

Transformers can solve group-sparse linear classification
Theorem. For any , suppose that , , .
Then there exists

ϵ > 0 D = ω(log2(1/ϵ)) d ≤ O(poly(D)) σx, η = Θ(1)

such that the following conclusions hold:

T* = Θ(D3 ∨ 1
D3ϵ3),

‣ Self-attention extracts the variables from the label-relevant group: w.h.p.,

S(T*)
j*,j ≥ 1 − exp(−Θ(D)), ∀j ∈ [D] .

17/29

Transformers can solve group-sparse linear classification
Theorem. For any , suppose that , , .
Then there exists

ϵ > 0 D = ω(log2(1/ϵ)) d ≤ O(poly(D)) σx, η = Θ(1)

such that the following conclusions hold:

T* = Θ(D3 ∨ 1
D3ϵ3),

‣ Self-attention extracts the variables from the label-relevant group: w.h.p.,

S(T*)
j*,j ≥ 1 − exp(−Θ(D)), ∀j ∈ [D] . Variable selection

17/29

Transformers can solve group-sparse linear classification
Theorem. For any , suppose that , , .
Then there exists

ϵ > 0 D = ω(log2(1/ϵ)) d ≤ O(poly(D)) σx, η = Θ(1)

such that the following conclusions hold:

T* = Θ(D3 ∨ 1
D3ϵ3),

‣ Self-attention extracts the variables from the label-relevant group: w.h.p.,

S(T*)
j*,j ≥ 1 − exp(−Θ(D)), ∀j ∈ [D] .

‣ The value vector successfully learns the ground truth classifier:v
, and v(T*) = [v(T*)⊤

1 , 0⊤
D]⊤ normalized(v(T*)

1) − v*
2

≤ ϵD exp(−Θ(D)) .

Variable selection

17/29

Transformers can solve group-sparse linear classification
Theorem. For any , suppose that , , .
Then there exists

ϵ > 0 D = ω(log2(1/ϵ)) d ≤ O(poly(D)) σx, η = Θ(1)

such that the following conclusions hold:

T* = Θ(D3 ∨ 1
D3ϵ3),

‣ Self-attention extracts the variables from the label-relevant group: w.h.p.,

S(T*)
j*,j ≥ 1 − exp(−Θ(D)), ∀j ∈ [D] .

‣ The value vector successfully learns the ground truth classifier:v
, and v(T*) = [v(T*)⊤

1 , 0⊤
D]⊤ normalized(v(T*)

1) − v*
2

≤ ϵD exp(−Θ(D)) .

Variable selection

Optimal linear classification on selected variables

17/29

Transformers can solve group-sparse linear classification
Theorem. For any , suppose that , , .
Then there exists

ϵ > 0 D = ω(log2(1/ϵ)) d ≤ O(poly(D)) σx, η = Θ(1)

such that the following conclusions hold:

T* = Θ(D3 ∨ 1
D3ϵ3),

‣ Self-attention extracts the variables from the label-relevant group: w.h.p.,

S(T*)
j*,j ≥ 1 − exp(−Θ(D)), ∀j ∈ [D] .

‣ The value vector successfully learns the ground truth classifier:v
, and v(T*) = [v(T*)⊤

1 , 0⊤
D]⊤ normalized(v(T*)

1) − v*
2

≤ ϵD exp(−Θ(D)) .

‣ The loss is sufficiently minimized:

L(v(T*), W(T*)) = Θ(ϵ ∧ D−2) .

Variable selection

Optimal linear classification on selected variables

17/29

Classification with variable selection

f(H, v, W) =
D

∑
j=1

v⊤Hsoftmax(H⊤Whj)Recall the prediction model:

18/29

Classification with variable selection

f(H, v, W) =
D

∑
j=1

v⊤Hsoftmax(H⊤Whj)

H

x1 x2 xD⋯

p1 p2 pD⋯

v⊤
1 v⊤

2

∝ v*⊤ ≈ 0⊤
Sj

≈ ej*

Recall the prediction model:

18/29

Classification with variable selection

f(H, v, W) =
D

∑
j=1

v⊤Hsoftmax(H⊤Whj)

H

x1 x2 xD⋯

p1 p2 pD⋯

v⊤
1 v⊤

2

∝ v*⊤ ≈ 0⊤
Sj

≈ ej*

Variable selector

Recall the prediction model:

18/29

Classification with variable selection

f(H, v, W) =
D

∑
j=1

v⊤Hsoftmax(H⊤Whj)

H

x1 x2 xD⋯

p1 p2 pD⋯

v⊤
1 v⊤

2

∝ v*⊤ ≈ 0⊤
Sj

≈ ej*

Variable selector

≈

HSj

xj*

pj*

v⊤
1 v⊤

2

∝ v*⊤ ≈ 0⊤

Recall the prediction model:

18/29

Classification with variable selection

f(H, v, W) =
D

∑
j=1

v⊤Hsoftmax(H⊤Whj)

H

x1 x2 xD⋯

p1 p2 pD⋯

v⊤
1 v⊤

2

∝ v*⊤ ≈ 0⊤
Sj

≈ ej*

Variable selector

≈

HSj

xj*

pj*

v⊤
1 v⊤

2

∝ v*⊤ ≈ 0⊤

Recall the prediction model:

Linear classification

18/29

Classification with variable selection

f(H, v, W) =
D

∑
j=1

v⊤Hsoftmax(H⊤Whj)

H

x1 x2 xD⋯

p1 p2 pD⋯

v⊤
1 v⊤

2

∝ v*⊤ ≈ 0⊤
Sj

≈ ej*

Variable selector

≈

HSj

xj*

pj*

v⊤
1 v⊤

2

∝ v*⊤ ≈ 0⊤
⟨v*, xj*⟩∼∝

Recall the prediction model:

Linear classification

18/29

Experiments - pretraining

Training loss, cosine similarity, norm ratio, and attention score for and
respectively when set .

(n, d, D) = (500,4,6) (n, d, D) = (200,2,4)
j* = 2

19/29

Transformers Learn Random Walk Prediction by
Attending to the Direct Parent State

20/29

A simple random walk prediction task
Consider a circle with nodes.K

1
2

4

5

3

K-3

K

K-1

K-2

21/29

A simple random walk prediction task
Consider a circle with nodes.K

1
2

4

5

3

K-3

K

K-1

K-2

A walk on the circle: the process where a ‘walker’
moves step-by-step among the nodes of the circle.

21/29

A simple random walk prediction task
Consider a circle with nodes.K

1
2

4

5

3

K-3

K

K-1

K-2

A walk on the circle: the process where a ‘walker’
moves step-by-step among the nodes of the circle.

State : the location of the walker at the -th
step ().

si ∈ [K] i
i ∈ [N]

21/29

A simple random walk prediction task
Consider a circle with nodes.K

1
2

4

5

3

K-3

K

K-1

K-2

A walk on the circle: the process where a ‘walker’
moves step-by-step among the nodes of the circle.

State : the location of the walker at the -th
step ().

si ∈ [K] i
i ∈ [N]

1 − p p

Suppose that is uniformly chosen. At
each step, the walker goes clockwise w.p. or
counter-clockwise w.p. .

s1 ∈ [K]
p

1 − p

21/29

A simple random walk prediction task
Consider a circle with nodes.K

1
2

4

5

3

K-3

K

K-1

K-2

A walk on the circle: the process where a ‘walker’
moves step-by-step among the nodes of the circle.

State : the location of the walker at the -th
step ().

si ∈ [K] i
i ∈ [N]

Goal: predict the location of the next step based
on the historical locations .

sN
s1, …, sN−1

1 − p p

Suppose that is uniformly chosen. At
each step, the walker goes clockwise w.p. or
counter-clockwise w.p. .

s1 ∈ [K]
p

1 − p

21/29

A simple random walk prediction task

1
2

4

5

3

K-3

K

K-1

K-2

Goal: predict the location of the next step based
on the historical locations .

sN
s1, …, sN−1

For , denote by the one-hot
encoding of . Then

i ∈ [N − 1] xi ∈ ℝK

si ∈ [K]
ℙ(xi |x1, …, xi−1) = ℙ(xi |xi−1) = Π*⊤xi−1,

22/29

1 − p p

A simple random walk prediction task

1
2

4

5

3

K-3

K

K-1

K-2

Goal: predict the location of the next step based
on the historical locations .

sN
s1, …, sN−1

For , denote by the one-hot
encoding of . Then

i ∈ [N − 1] xi ∈ ℝK

si ∈ [K]
ℙ(xi |x1, …, xi−1) = ℙ(xi |xi−1) = Π*⊤xi−1,

Markov property

22/29

1 − p p

A simple random walk prediction task

1
2

4

5

3

K-3

K

K-1

K-2

Goal: predict the location of the next step based
on the historical locations .

sN
s1, …, sN−1

For , denote by the one-hot
encoding of . Then

i ∈ [N − 1] xi ∈ ℝK

si ∈ [K]
ℙ(xi |x1, …, xi−1) = ℙ(xi |xi−1) = Π*⊤xi−1,

Markov property

22/29

1 − p p

where is the ground-truth transition matrix:Π*

p = 0.5 p = 0.7

Random walk prediction with transformers

H = [x1 x2 … xN−1 0
p1 p2 … pN−1 pN] ∈ ℝ(K+M)×NInput matrix:

23/29

Random walk prediction with transformers

H = [x1 x2 … xN−1 0
p1 p2 … pN−1 pN] ∈ ℝ(K+M)×NInput matrix:

Mutually orthogonal positional encodings

23/29

Random walk prediction with transformers

H = [x1 x2 … xN−1 0
p1 p2 … pN−1 pN] ∈ ℝ(K+M)×NInput matrix:

Label: y = sN ∼ Π*⊤xi−1

Mutually orthogonal positional encodings

23/29

Random walk prediction with transformers

H = [x1 x2 … xN−1 0
p1 p2 … pN−1 pN] ∈ ℝ(K+M)×NInput matrix:

Label: y = sN ∼ Π*⊤xi−1

Transformer model: f(H, V, W) = VXsoftmax(H⊤WhN)

Mutually orthogonal positional encodings

23/29

Random walk prediction with transformers

H = [x1 x2 … xN−1 0
p1 p2 … pN−1 pN] ∈ ℝ(K+M)×NInput matrix:

Label: y = sN ∼ Π*⊤xi−1

We do not include the positional encodings here.
Transformer model: f(H, V, W) = VXsoftmax(H⊤WhN)

Mutually orthogonal positional encodings

23/29

Random walk prediction with transformers

H = [x1 x2 … xN−1 0
p1 p2 … pN−1 pN] ∈ ℝ(K+M)×NInput matrix:

Label: y = sN ∼ Π*⊤xi−1

We do not include the positional encodings here.

Population log loss: L(V, W) = *(X,y) log[e⊤
y f(H, V, W) + ϵ]

Gradient descent:

V(t+1) = V(t) − η∇VL(V(t), W(t)); W(t+1) = W(t) − η∇WL(V(t), W(t)),
with zero initialization: , .v(0) = 0K×K W(0) = 0(K+M)×(K+M)

Transformer model: f(H, V, W) = VXsoftmax(H⊤WhN)

Mutually orthogonal positional encodings

23/29

Transformers learn random walk prediction

Theorem. Suppose that , and . Under certain conditions, there exists ,
such that for any polynomial iteration number , the following results hold:

0 < p < 1 η, ϵ = Θ(1) T0 = Θ(1)
T ≥ T0

24/29

Transformers learn random walk prediction

Theorem. Suppose that , and . Under certain conditions, there exists ,
such that for any polynomial iteration number , the following results hold:

0 < p < 1 η, ϵ = Θ(1) T0 = Θ(1)
T ≥ T0

‣ Softmax attention selects the “direct parent” token:

[softmax(H⊤W(T)hN)]N−1 ≥ 1 − exp(−Ω(N)), [softmax(H⊤W(T)hN)]j
≤ exp(−Ω(N)) .

24/29

Transformers learn random walk prediction

Theorem. Suppose that , and . Under certain conditions, there exists ,
such that for any polynomial iteration number , the following results hold:

0 < p < 1 η, ϵ = Θ(1) T0 = Θ(1)
T ≥ T0

‣ Softmax attention selects the “direct parent” token:

[softmax(H⊤W(T)hN)]N−1 ≥ 1 − exp(−Ω(N)), [softmax(H⊤W(T)hN)]j
≤ exp(−Ω(N)) .

24/29

Selector of the parent token

Transformers learn random walk prediction

Theorem. Suppose that , and . Under certain conditions, there exists ,
such that for any polynomial iteration number , the following results hold:

0 < p < 1 η, ϵ = Θ(1) T0 = Θ(1)
T ≥ T0

‣ The value matrix converges to the true transition matrix in direction:

V(T)

∥V(T)∥F
− Π*⊤

∥Π*⊤∥F F

= O (1
T) .

‣ Softmax attention selects the “direct parent” token:

[softmax(H⊤W(T)hN)]N−1 ≥ 1 − exp(−Ω(N)), [softmax(H⊤W(T)hN)]j
≤ exp(−Ω(N)) .

24/29

Selector of the parent token

Transformers learn random walk prediction

Theorem. Suppose that , and . Under certain conditions, there exists ,
such that for any polynomial iteration number , the following results hold:

0 < p < 1 η, ϵ = Θ(1) T0 = Θ(1)
T ≥ T0

‣ The value matrix converges to the true transition matrix in direction:

V(T)

∥V(T)∥F
− Π*⊤

∥Π*⊤∥F F

= O (1
T) .

‣ Softmax attention selects the “direct parent” token:

[softmax(H⊤W(T)hN)]N−1 ≥ 1 − exp(−Ω(N)), [softmax(H⊤W(T)hN)]j
≤ exp(−Ω(N)) .

24/29

Selector of the parent token

Optimal probability transition on the parent token

25/29

V ∝ Π⊤ X S

Transformers learn random walk prediction

25/29

V ∝ Π⊤ X S

Token selector

Transformers learn random walk prediction

25/29

=

V ∝ Π⊤ xN−1V ∝ Π⊤ X S

Token selector

Transformers learn random walk prediction

25/29

=

V ∝ Π⊤ xN−1V ∝ Π⊤ X S

Token selector One-step probability transition

Transformers learn random walk prediction

25/29

=

V ∝ Π⊤ xN−1V ∝ Π⊤ X S

Token selector One-step probability transition

=

ℙ(y |xN−1)

Transformers learn random walk prediction

Transformers learn random walk prediction

Corollary. Suppose that , and . Under certain conditions, there exists ,
such that for any polynomial iteration number , the following results hold:

0 < p < 1 η, ϵ = Θ(1) T0 = Θ(1)
T ≥ T0

26/29

Transformers learn random walk prediction

Corollary. Suppose that , and . Under certain conditions, there exists ,
such that for any polynomial iteration number , the following results hold:

0 < p < 1 η, ϵ = Θ(1) T0 = Θ(1)
T ≥ T0

‣ The transformer converges to the optimal predictor:

f(H, V(T), W(T))
∥f(H, V(T), W(T))∥2

− Π*⊤xN−1
2

= O (1
T) .

26/29

Transformers learn random walk prediction

Corollary. Suppose that , and . Under certain conditions, there exists ,
such that for any polynomial iteration number , the following results hold:

0 < p < 1 η, ϵ = Θ(1) T0 = Θ(1)
T ≥ T0

‣ The transformer converges to the optimal predictor:

f(H, V(T), W(T))
∥f(H, V(T), W(T))∥2

− Π*⊤xN−1
2

= O (1
T) .

26/29

‣ The trained transformer achieves optimal prediction accuracy:

.ℙ(X,y)[Pred[f(X, V(T), W(T))] = y] = max{p,1 − p}

Pred(f) = min {j ∈ [K] : [f]j = max
i∈[K]

{[f]i}} .Here we define:

Transformers learn random walk prediction

Corollary. Suppose that , and . Under certain conditions, there exists ,
such that for any polynomial iteration number , the following results hold:

0 < p < 1 η, ϵ = Θ(1) T0 = Θ(1)
T ≥ T0

‣ The transformer converges to the optimal predictor:

f(H, V(T), W(T))
∥f(H, V(T), W(T))∥2

− Π*⊤xN−1
2

= O (1
T) .

26/29

‣ The trained transformer achieves optimal prediction accuracy:

.ℙ(X,y)[Pred[f(X, V(T), W(T))] = y] = max{p,1 − p}

Pred(f) = min {j ∈ [K] : [f]j = max
i∈[K]

{[f]i}} .Here we define:

Optimal accuracy

Failure in learning “deterministic walks” with p = 0 or 1
Theorem. Suppose that , is a constant integer, and with . Then for any loss
function , any learning rate , and any , it holds that

p = 0 or 1 K N = rK + 1 r ≥ 1
ℓ(⋅) η > 0 T ≥ 0

.ℙ(X,y)[Pred[f(X, V(T), W(T))] = y] = 1
K

27/29

Failure in learning “deterministic walks” with p = 0 or 1
Theorem. Suppose that , is a constant integer, and with . Then for any loss
function , any learning rate , and any , it holds that

p = 0 or 1 K N = rK + 1 r ≥ 1
ℓ(⋅) η > 0 T ≥ 0

.ℙ(X,y)[Pred[f(X, V(T), W(T))] = y] = 1
K

Random guess

27/29

Failure in learning “deterministic walks” with p = 0 or 1
Theorem. Suppose that , is a constant integer, and with . Then for any loss
function , any learning rate , and any , it holds that

p = 0 or 1 K N = rK + 1 r ≥ 1
ℓ(⋅) η > 0 T ≥ 0

.ℙ(X,y)[Pred[f(X, V(T), W(T))] = y] = 1
K

Moreover, with probability 1, for all , it holds thatT ≥ 0

V(T) ∝ 1K×K, [softmax(H⊤W(T)hN)]1 = ⋯ = [softmax(H⊤W(T)hN)]N−1 .

Random guess

27/29

Failure in learning “deterministic walks” with p = 0 or 1
Theorem. Suppose that , is a constant integer, and with . Then for any loss
function , any learning rate , and any , it holds that

p = 0 or 1 K N = rK + 1 r ≥ 1
ℓ(⋅) η > 0 T ≥ 0

.ℙ(X,y)[Pred[f(X, V(T), W(T))] = y] = 1
K

Moreover, with probability 1, for all , it holds thatT ≥ 0

V(T) ∝ 1K×K, [softmax(H⊤W(T)hN)]1 = ⋯ = [softmax(H⊤W(T)hN)]N−1 .

At zero initialization, softmax attention serves as an average, and the average
 is not informative at all!x ∝ 1

Random guess

27/29

Failure in learning “deterministic walks” with p = 0 or 1
Theorem. Suppose that , is a constant integer, and with . Then for any loss
function , any learning rate , and any , it holds that

p = 0 or 1 K N = rK + 1 r ≥ 1
ℓ(⋅) η > 0 T ≥ 0

.ℙ(X,y)[Pred[f(X, V(T), W(T))] = y] = 1
K

Moreover, with probability 1, for all , it holds thatT ≥ 0

V(T) ∝ 1K×K, [softmax(H⊤W(T)hN)]1 = ⋯ = [softmax(H⊤W(T)hN)]N−1 .

At zero initialization, softmax attention serves as an average, and the average
 is not informative at all!x ∝ 1 Optimization is on a “ridge” of bad points.⟹

Random guess

27/29

Failure in learning “deterministic walks” with p = 0 or 1
Theorem. Suppose that , is a constant integer, and with . Then for any loss
function , any learning rate , and any , it holds that

p = 0 or 1 K N = rK + 1 r ≥ 1
ℓ(⋅) η > 0 T ≥ 0

.ℙ(X,y)[Pred[f(X, V(T), W(T))] = y] = 1
K

Moreover, with probability 1, for all , it holds thatT ≥ 0

V(T) ∝ 1K×K, [softmax(H⊤W(T)hN)]1 = ⋯ = [softmax(H⊤W(T)hN)]N−1 .

At zero initialization, softmax attention serves as an average, and the average
 is not informative at all!x ∝ 1

Random initialization overcomes the issue to a certain extent.

 Optimization is on a “ridge” of bad points.⟹

Random guess

27/29

Experiments

:p = 1/2
K = 20, N = 101

Accuracy V(T) Softmax attention

28/29

Experiments

:p = 1/2
K = 20, N = 101

:p = 1
K = 20, N = 101

Accuracy V(T) Softmax attention

28/29

Summary

By gradient descent based training, a one-layer transformer can handle different
classic statistical learning tasks:

29/29

Summary

When the data follows a 1-NN model, the trained transformer can learn the 1-NN
prediction rule, with softmax attention serves as a nearest neighbor selector;

By gradient descent based training, a one-layer transformer can handle different
classic statistical learning tasks:

29/29

Summary

When the data follows a 1-NN model, the trained transformer can learn the 1-NN
prediction rule, with softmax attention serves as a nearest neighbor selector;

By gradient descent based training, a one-layer transformer can handle different
classic statistical learning tasks:

When the data follows a group-sparse model, the trained transformer can capture
the sparsity pattern, with softmax attention serves as a variable selector;

29/29

Summary

When the data follows a 1-NN model, the trained transformer can learn the 1-NN
prediction rule, with softmax attention serves as a nearest neighbor selector;

By gradient descent based training, a one-layer transformer can handle different
classic statistical learning tasks:

When the data follows a group-sparse model, the trained transformer can capture
the sparsity pattern, with softmax attention serves as a variable selector;

When the data follows a random walk, the trained transformer can capture the
Markov property, with softmax attention serves as a parent token selector.

29/29

Summary

When the data follows a 1-NN model, the trained transformer can learn the 1-NN
prediction rule, with softmax attention serves as a nearest neighbor selector;

By gradient descent based training, a one-layer transformer can handle different
classic statistical learning tasks:

When the data follows a group-sparse model, the trained transformer can capture
the sparsity pattern, with softmax attention serves as a variable selector;

When the data follows a random walk, the trained transformer can capture the
Markov property, with softmax attention serves as a parent token selector.

Thank you!
29/29

Self-attention in transformers

self-attention(X) = WVXsoftmax(X⊤W⊤
KWQX),

Self-attention in transformers

self-attention(X) = WVXsoftmax(X⊤W⊤
KWQX),

[self-attention(X)]⋅i = WVXsoftmax(X⊤W⊤
KWQxi)

= ∑
i

αji ⋅ WVxj

Self-attention in transformers

self-attention(X) = WVXsoftmax(X⊤W⊤
KWQX),

[self-attention(X)]⋅i = WVXsoftmax(X⊤W⊤
KWQxi)

= ∑
i

αji ⋅ WVxj

Self-attention in transformers

self-attention(X) = WVXsoftmax(X⊤W⊤
KWQX),

[self-attention(X)]⋅i = WVXsoftmax(X⊤W⊤
KWQxi)

Scores

= ∑
i

αji ⋅ WVxj

Self-attention in transformers

self-attention(X) = WVXsoftmax(X⊤W⊤
KWQX),

[self-attention(X)]⋅i = WVXsoftmax(X⊤W⊤
KWQxi)

Scores

Diverse roles of self-attention

softmax(z) ≈
average, if z ≈ 0,
weighted average, if ∥z∥2 is neither too large nor too small,
′ hard max′ , if ∥z∥2 → ∞,

= ∑
j

αji ⋅ WVxj[self-attention(X)]⋅i = WVXsoftmax(X⊤W⊤
KWQxi)

Scores

Diverse roles of self-attention

softmax(z) ≈
average, if z ≈ 0,
weighted average, if ∥z∥2 is neither too large nor too small,
′ hard max′ , if ∥z∥2 → ∞,

0
⋮
0
1
0
⋮
0

The largest entry in z

= ∑
j

αji ⋅ WVxj[self-attention(X)]⋅i = WVXsoftmax(X⊤W⊤
KWQxi)

Scores

Diverse roles of self-attention

softmax(z) ≈
average, if z ≈ 0,
weighted average, if ∥z∥2 is neither too large nor too small,
′ hard max′ , if ∥z∥2 → ∞,

0
⋮
0
1
0
⋮
0

The largest entry in z ⟹ “Token/variable selection”

= ∑
j

αji ⋅ WVxj[self-attention(X)]⋅i = WVXsoftmax(X⊤W⊤
KWQxi)

Scores

Proof sketch of in-context nearest neighbor predictor
Consider the parameter matrix as a block matrix:W

W =
W11 W12 W13
W21 W22 W23
W31 W32 W33

.

Proof sketch of in-context nearest neighbor predictor
Consider the parameter matrix as a block matrix:W

W =
W11 W12 W13
W21 W22 W23
W31 W32 W33

.

{d{1

{
d

{1

{1{1

Proof sketch of in-context nearest neighbor predictor
Consider the parameter matrix as a block matrix:W

W =
W11 W12 W13
W21 W22 W23
W31 W32 W33

.

{d{1

{
d

{1

{1{1

H =
x1 x2 … xN xquery
y1 y2 … yN 0
0 0 … 0 1

.

Proof sketch of in-context nearest neighbor predictor

A key observation is that

∇W11
L(W(t)) = *[

N

∑
i=1

g(t)
i (x⊤

i xN+1) ⋅ xix⊤
N+1 + g(t)

* (x⊤
i*xN+1) ⋅ xi*x⊤

N+1],

where , are functions that map scalars to scalars. gk
i (x) : ℝ → ℝ i ∈ [N]

Consider the parameter matrix as a block matrix:W

W =
W11 W12 W13
W21 W22 W23
W31 W32 W33

.

{d{1

{
d

{1

{1{1

H =
x1 x2 … xN xquery
y1 y2 … yN 0
0 0 … 0 1

.

Proof sketch of in-context nearest neighbor predictor

A key observation is that

∇W11
L(W(t)) = *[

N

∑
i=1

g(t)
i (x⊤

i xN+1) ⋅ xix⊤
N+1 + g(t)

* (x⊤
i*xN+1) ⋅ xi*x⊤

N+1],

where , are functions that map scalars to scalars. gk
i (x) : ℝ → ℝ i ∈ [N]

Consider the parameter matrix as a block matrix:W

W =
W11 W12 W13
W21 W22 W23
W31 W32 W33

.

{d{1

{
d

{1

{1{1

H =
x1 x2 … xN xquery
y1 y2 … yN 0
0 0 … 0 1

.

U∇W11
L(W(t))U⊤ = ∇W11

L(W(t)) for all orthogonal matrix ! U ⟹ ∇W11
L(W(t)) ∝ I

Proof sketch of in-context nearest neighbor predictor

A key observation is that

∇W11
L(W(t)) = *[

N

∑
i=1

g(t)
i (x⊤

i xN+1) ⋅ xix⊤
N+1 + g(t)

* (x⊤
i*xN+1) ⋅ xi*x⊤

N+1],

where , are functions that map scalars to scalars. gk
i (x) : ℝ → ℝ i ∈ [N]

Moreover, for all except for and ! ∇Wij
L(Wk) = 0 i, j W11 W33

Consider the parameter matrix as a block matrix:W

W =
W11 W12 W13
W21 W22 W23
W31 W32 W33

.

{d{1

{
d

{1

{1{1

H =
x1 x2 … xN xquery
y1 y2 … yN 0
0 0 … 0 1

.

U∇W11
L(W(t))U⊤ = ∇W11

L(W(t)) for all orthogonal matrix ! U ⟹ ∇W11
L(W(t)) ∝ I

Proof sketch of in-context nearest neighbor predictor

Along the optimization path of gradient descent, the weights has the form

 with .W(t) = diag{ξ(t)
1 , …, ξ(t)

1

d times

,0, − ξ(t)
2 }, ξk

1, ξk
2 > 0

Proposition.

Proof sketch of in-context nearest neighbor predictor

Along the optimization path of gradient descent, the weights has the form

 with .W(t) = diag{ξ(t)
1 , …, ξ(t)

1

d times

,0, − ξ(t)
2 }, ξk

1, ξk
2 > 0

Proposition.

Proof sketch of in-context nearest neighbor predictor

softmax(H⊤W(t)H) = softmax

ξ(t)
1 ⋅ ⟨x1, xquery⟩

ξ(t)
1 ⋅ ⟨x2, xquery⟩

⋮
ξ(t)

1 ⋅ ⟨xN, xquery⟩
−ξ(t)

2

Proof sketch of in-context nearest neighbor predictor

softmax(H⊤W(t)H) = softmax

ξ(t)
1 ⋅ ⟨x1, xquery⟩

ξ(t)
1 ⋅ ⟨x2, xquery⟩

⋮
ξ(t)

1 ⋅ ⟨xN, xquery⟩
−ξ(t)

2

≈ hardmax

−∥x1 − xquery∥2
2

−∥x2 − xquery∥2
2

⋮
−∥xN − xquery∥2

2
−∞

As .ξ(t)
1 ≫ ξ(t)

2 → + ∞

Downstream task for group-sparse classification
Consider a downstream task, where the data follow an arbitrary
distribution satisfying (i) is sub-Gaussian, and (ii) almost surely.

{(X̃(i), ỹ(i))}n
i=1

X̃ ỹ ⋅ ⟨ṽ*, x̃j*⟩ ≥ γ

Downstream task for group-sparse classification
Consider a downstream task, where the data follow an arbitrary
distribution satisfying (i) is sub-Gaussian, and (ii) almost surely.

{(X̃(i), ỹ(i))}n
i=1

X̃ ỹ ⋅ ⟨ṽ*, x̃j*⟩ ≥ γ

We only assume the label-relevant group index to be the same as that in pre-
training, while the ground-truth linear vectors and can differ.

j*
ṽ* v*

Downstream task for group-sparse classification
Consider a downstream task, where the data follow an arbitrary
distribution satisfying (i) is sub-Gaussian, and (ii) almost surely.

{(X̃(i), ỹ(i))}n
i=1

X̃ ỹ ⋅ ⟨ṽ*, x̃j*⟩ ≥ γ

We only assume the label-relevant group index to be the same as that in pre-
training, while the ground-truth linear vectors and can differ.

j*
ṽ* v*

Theorem. For any , under certain conditions, w.p. at least , the model fine-tuned
with online SGD achieves:

δ > 0 1 − δ

Test error ≤ O((d + D)log2 n
γ2n) + Õ(log(1/δ)

n) .

Downstream task for group-sparse classification
Consider a downstream task, where the data follow an arbitrary
distribution satisfying (i) is sub-Gaussian, and (ii) almost surely.

{(X̃(i), ỹ(i))}n
i=1

X̃ ỹ ⋅ ⟨ṽ*, x̃j*⟩ ≥ γ

We only assume the label-relevant group index to be the same as that in pre-
training, while the ground-truth linear vectors and can differ.

j*
ṽ* v*

Theorem. For any , under certain conditions, w.p. at least , the model fine-tuned
with online SGD achieves:

δ > 0 1 − δ

Test error ≤ O((d + D)log2 n
γ2n) + Õ(log(1/δ)

n) .

Sample complexity: ; Ω̃((d + D)/ϵ)

Downstream task for group-sparse classification
Consider a downstream task, where the data follow an arbitrary
distribution satisfying (i) is sub-Gaussian, and (ii) almost surely.

{(X̃(i), ỹ(i))}n
i=1

X̃ ỹ ⋅ ⟨ṽ*, x̃j*⟩ ≥ γ

We only assume the label-relevant group index to be the same as that in pre-
training, while the ground-truth linear vectors and can differ.

j*
ṽ* v*

Theorem. For any , under certain conditions, w.p. at least , the model fine-tuned
with online SGD achieves:

δ > 0 1 − δ

Test error ≤ O((d + D)log2 n
γ2n) + Õ(log(1/δ)

n) .

Sample complexity: ; Ω̃((d + D)/ϵ)
Sample complexity lower bound of linear logistic regression on is .vec(X̃) Ω̃(dD/ϵ)

Experiments - downstream task

Test accuracy in the downstream task when utilizing the pre-trained .W(T*)

