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Compatibility with classic models?

Adaptivity to a variety of classic tasks?

Capability to capture underlying statistical structures?

Simple transformer + = ?
Nearest neighbor, group-sparse classification, random walk

Data following classic 
statistical models

By considering such settings, we aim to understand transformers’:

We will give learning guarantees & interpretations of the trained model.



Overview

Transformers as in-context one-nearest neighbor predictors

Transformers as group-sparse linear predictors

Transformers as random walk predictors

Zihao Li, Yuan Cao, Cheng Gao, Yihan He, Han Liu, Jason Klusowski, Jianqing Fan, and Mengdi 
Wang. "One-layer transformer provably learns one-nearest neighbor in context." NeurIPS 2024

Chenyang Zhang, Xuran Meng, and Yuan Cao. "Transformer learns optimal variable selection in 
group-sparse classification." ICLR 2025

Wei Shi and Yuan Cao. "Towards Understanding Transformers in Learning Random Walks.” 
submitted.
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A classic theoretical setup: in-context linear regression [Zhang et al., 2023, Bai et al. 2024, …]

H =
x1 x2 … xN xquery
y1 y2 … yN 0
p1 p2 … pN pquery

Input matrix:

Output: [self-attention(H)]d+1,N+1

The desired output should give the result of:

(i) performing linear regression on  and obtain linear model ;{(xi, yi)}N
i=1 ŵ

(ii) calculating the predicted value .⟨ŵ, xquery⟩

xi, xquery ∈ ℝd

“Positional encoding”

Can transformers be trained to perform one-nearest neighbor prediction?

In-context linear regression



In-context one-nearest neighbor prediction
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In-context one-nearest neighbor prediction

•   i.i.d. sampled from  
•   , 

•

xi ∈ ℝd : U()d−1)
yi ∈ {±1} : *[yiyj |x1:N] = 0, *[y2

i |x1:N] = 1
ℙ(y1:N |x1:N) = ℙ(y1:N | − x1:N)
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We consider minimizing the population square loss with gradient descent:

L(W) = 1
2 ⋅ *{xi,yi}i∈[N],xquery[(fW(H) − yi*)2] .

W(t+1) − W(t) = η ⋅ ∇WL(W(t)), W(0) = (
0(d+1)×(d+1) 0d+1

0d+1 −σ ) .

The constant  serves as a mask to prevent the query from attending to itself.σ > 0

Loss function:

Gradient descent:



One-layer transformer learns 1NN in context
Theorem. Suppose that

Then  converges to zero.L(W(t))

The mask  in the initialization satisfies ,σ σ = Ω(poly(d))
The length of context satisfies ,N = Ω( d log d)
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“Nearest neighbor selector”



Prediction performance under distribution shift

Theorem. For any data satisfying , , and|yi | ≤ R xi ∈ )d−1

it holds that

   for all  with ,∥xj − xquery∥2
2 ≥ ∥xi* − xquery∥2

2 + δ j yj ≠ yi*

Test loss ≤ O(R2N2T−poly(N,d)δ) .

11/29

We also study the performance of the transformer trained by  gradient descent iterations on 
new test data with distribution shift.
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Prediction performance under distribution shiftTraining loss under uniform distribution over the sphere
Experiments

Training (left) and test loss (right) curves under gradient descent, with different dimensions and context sizes. The 
test contexts are generated with a boundary separation of .δ = 0.1 12/29
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Group-Sparse Classification
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Group-sparse linear classification

Consider a classification task: , .x ∼ N(0, σ2
x ⋅ Ip) y = sign(⟨x, β*⟩)

Suppose that index sets  give a predefined partition of .G1, …, GD {1,…, p}

The learning problem is “group sparse” if  satisfies thatβ*

supp(β*) := {k ∈ [p] : [β*]k ≠ 0} ⊂ G*j ,

where  is the index of label-relevant group.j* ∈ [D]

14/29



Solving group-sparse classification with transformers

where each column .xj = [x]Gj
∼ 6(0, σ2

x Id)

Let  with  denoting the dimension of each group. We can then reshape 
the feature vector  into 

p = dD d
x

X = [x1, x2, …, xD],
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∼ 6(0, σ2

x Id)

Let  with  denoting the dimension of each group. We can then reshape 
the feature vector  into 

p = dD d
x

The desired output is then

y = sign(⟨xj*, v*⟩),

where .v* = [β*]Gj*
∈ ℝd

X = [x1, x2, …, xD],

Label

pj ∈ ℝD
+ positional encodings

H = [h1, h2, …, hD] = [x1 x2 … xD
p1 p2 … pD] ∈ ℝ(d+D)×D .Input matrix:
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Consider a scalar-output one-layer transformer model:

f(H, v, W) =
D

∑
j=1

v⊤Hsoftmax(H⊤Whj)

Population cross-entropy loss:

L(v, W) = *(X,y)[ℓ(y ⋅ f(H, v, W))],
where  is the cross-entropy loss.ℓ(a) = log(1 + exp(−a))

Gradient descent:

v(t+1) = v(t) − η∇vL(v(t), W(t)); W(t+1) = W(t) − η∇WL(v(t), W(t)),
with zero initialization: , .v(0) = 0d+D W(0) = 0(d+D)×(d+D) 16/29
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S(T*)
j*,j ≥ 1 − exp(−Θ(D)), ∀j ∈ [D] .

‣ The value vector  successfully learns the ground truth classifier:v
, and v(T*) = [v(T*)⊤

1 , 0⊤
D]⊤ normalized(v(T*)

1 ) − v*
2

≤ ϵD exp(−Θ( D)) .

‣ The loss is sufficiently minimized:

L(v(T*), W(T*)) = Θ(ϵ ∧ D−2) .

Variable selection

Optimal linear classification on selected variables
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Sj

≈ ej*

Variable selector

≈

HSj

xj*

pj*

v⊤
1 v⊤

2

∝ v*⊤ ≈ 0⊤
⟨v*, xj*⟩∼∝

Recall the prediction model:

Linear classification
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Experiments - pretraining

Training loss, cosine similarity, norm ratio, and attention score for  and  
respectively when set .

(n, d, D) = (500,4,6) (n, d, D) = (200,2,4)
j* = 2

19/29



Transformers Learn Random Walk Prediction by 
Attending to the Direct Parent State
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1 − p p

where  is the ground-truth transition matrix:Π*

p = 0.5 p = 0.7
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H = [x1 x2 … xN−1 0
p1 p2 … pN−1 pN] ∈ ℝ(K+M)×NInput matrix:

Label: y = sN ∼ Π*⊤xi−1

We do not include the positional encodings here.

Population log loss: L(V, W) = *(X,y) log[e⊤
y f(H, V, W) + ϵ]

Gradient descent:

V(t+1) = V(t) − η∇VL(V(t), W(t)); W(t+1) = W(t) − η∇WL(V(t), W(t)),
with zero initialization: , .v(0) = 0K×K W(0) = 0(K+M)×(K+M)

Transformer model: f(H, V, W) = VXsoftmax(H⊤WhN)

Mutually orthogonal positional encodings
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Transformers learn random walk prediction

Theorem. Suppose that , and . Under certain conditions, there exists , 
such that for any polynomial iteration number , the following results hold:

0 < p < 1 η, ϵ = Θ(1) T0 = Θ(1)
T ≥ T0
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Pred(f) = min {j ∈ [K] : [f]j = max
i∈[K]
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V(T) ∝ 1K×K, [softmax(H⊤W(T)hN)]1 = ⋯ = [softmax(H⊤W(T)hN)]N−1 .

At zero initialization, softmax attention serves as an average, and the average 
 is not informative at all!x ∝ 1

Random initialization overcomes the issue to a certain extent.

 Optimization is on a “ridge” of bad points.⟹

Random guess
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Summary

When the data follows a 1-NN model, the trained transformer can learn the 1-NN 
prediction rule, with softmax attention serves as a nearest neighbor selector;

By gradient descent based training, a one-layer transformer can handle different 
classic statistical learning tasks:

When the data follows a group-sparse model, the trained transformer can capture 
the sparsity pattern, with softmax attention serves as a variable selector;

When the data follows a random walk, the trained transformer can capture the 
Markov property, with softmax attention serves as a parent token selector.

Thank you!
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average, if z ≈ 0,
weighted average, if ∥z∥2 is neither too large nor too small,
′ hard max′ , if ∥z∥2 → ∞,

0
⋮
0
1
0
⋮
0

The largest entry in z ⟹ “Token/variable selection”

= ∑
j

αji ⋅ WVxj[self-attention(X)]⋅i = WVXsoftmax(X⊤W⊤
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Proof sketch of in-context nearest neighbor predictor

softmax(H⊤W(t)H) = softmax

ξ(t)
1 ⋅ ⟨x1, xquery⟩

ξ(t)
1 ⋅ ⟨x2, xquery⟩

⋮
ξ(t)

1 ⋅ ⟨xN, xquery⟩
−ξ(t)

2

≈ hardmax

−∥x1 − xquery∥2
2

−∥x2 − xquery∥2
2

⋮
−∥xN − xquery∥2

2
−∞

As .ξ(t)
1 ≫ ξ(t)

2 → + ∞
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i=1
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Experiments - downstream task

Test accuracy in the downstream task when utilizing the pre-trained .W(T*)


