Token Selection in the Self-Attention Mechanism:
Case Studies and Theoretical Understanding

Yuan Cao
The University of Hong Kong

Zihao Li, Cheng Gao, Yihan He, Chenyang Zhang, Xuran Meng, Wei Shi,
Joint work with:
Han Liu, Jason Klusowski, Jianging Fan, Mengdi Wang

01/29

uccess of transformers

AlphaFold 3

02/29

Theoretical understanding of transformers is limited

Output
Probabilities
t
EE Large amount of natural

Coe) language data

(— N

| LAdd &_Norm |

| I Feed |

I Forward [

I | Y g e
S — Ly | f > ! . e
B ')1| (Acd & Nom ! % ¢ vie
| Add & Norm) : = : , ~ BCESE M30M ~Dast oeros
| - =5 ' b BTy srecm—, » rful |
: I Forward |55 o OO e AUl ARSIract for this worksheg _ owertul language
| g ' \:- ,—) y : h P I‘b.ﬁ"" DADO B » vl e ‘,’ —
:Nx | | [Add & Norm Je~ : ' les E"“ ' mOdeI
: Add & Norm : Masked : m ...‘b'"
| Wm [Muti-Head | wegip e
: Attention | Attention | E por) 2 nd

') | I -t :
| \ AT S I} _'_}). : wegs B,
L o . o T he
Rositional /e A ___ ' ____l_Z~\ Pasitionl o
Encoding Encoding ‘.1 rar
Input Output e
l Embedding [Embedding 4 ! !
Inputs Outputs

(shifted right)

[Vaswani et al. 2017]

03/29

Theoretical understanding of transformers is limited

Output
Proba'bilities
EE Large amount of natural
Li
N . | language data
if ¢ L = |
| (Add & Norm :
| l Feed |
I Forward [
= e = e e e e == - I ! } J I
; ~ Al Add & Norm |
| Add&Norm] | |, = : BUESE P30M ~DAst Dron
‘ s | | [Aemen | || /An abstract for thisworky Powerful language
| ! ! AN ADStract for this worksheo
: I Forv:ard ¢_L)f—) S Nx: + l\bb\tﬂ DADO & » wnd e ‘,] E—
\ | I
:Nx | 1| | Add & Norm l “"" 1 M'mm.*!ud*~ mOdeI
: Add & Norm : __"_—Masked ; ...trj Pmﬂunlum - a B
. I Multi-Head '| | Mutti-Head ; s a7 e bl b deng
. Attention Attention gt -
. ! i o 7d L eninemen e o
| it 7 1 I o il d b
- G = Bl R e
ositional . N I Pasitionhl el “'m”.“
Encoding ®_€? %_® Encoding s & s Ly zdn}lnﬁ‘d.—.‘
o Sl " ser ..mwﬂ'-ﬂm-iﬂ‘
Embedding Embedding 4 ! . ‘“wm
] I | .u:‘." axch sl i
Inputs Outputs ahjocn o B WO
(shifted right)

[Vaswani et al. 2017]

Optimization/learning guarantees?
03/29

Theoretical understanding of transformers is limited

Add & Norm
Feed
Forward

|
Nx Add & Norm

Multi-Head
Attention

Output
Probabilities

Softmax

—t

T |

1
Add & Norm

Feed
Forward

)

Add &. Norm

Multi-Head
Attention

|

il S =

J

L Add & Norm

Masked
Multi-Head
Attention

t}

J

\ J
- Pasitionhl
Encoding

Output
Embedding

I

Outputs
(shifted right)

[Vaswani et al. 2017]

Large amount of natural
language data

. ?ml FROM “DASL teroe

e
“t
Gn

m R e L L T
_ Ry .c‘.] ahutract far th ' e
» -u L) WU
o : :\b.ﬁ\fﬂ DO & » vl e
fes WM [y Aawi—The pper atwhos 1 sl wided
'm o ‘.Mnhm '
Wegig o ™o Trchaigr i o b deg
gt o 79 eninemen e o
-e_
=Gﬁ
kw
les

Optimization/learning guarantees?

Powerful language
model

Interpretability?

03/29

We consider...

Data following classic __ ‘7

Simple transformer T statistical models e

Nearest neighbor, group-sparse classification, random walk

04/29

We consider...

Data following classic
+ ; =)

Simple transformer statistical models I

Nearest neighbor, group-sparse classification, random walk

By considering such settings, we aim to understand transformers’:

04/29

We consider...

Data following classic __ ‘7

Simple transformer T statistical models .

Nearest neighbor, group-sparse classification, random walk

By considering such settings, we aim to understand transformers’:

Compatibility with classic models?

04/29

We consider...

Data following classic
+ ; =)

Simple transformer statistical models e

Nearest neighbor, group-sparse classification, random walk

By considering such settings, we aim to understand transformers’:
Compatibility with classic models?

Adaptivity to a variety of classic tasks?

04/29

We consider...

Data following classic
n 9 =)

Simple transformer statistical models e

Nearest neighbor, group-sparse classification, random walk

By considering such settings, we aim to understand transformers’:
Compatibility with classic models?
Adaptivity to a variety of classic tasks?

Capability to capture underlying statistical structures?

04/29

We consider...

Data following classic __ f?

Simple transformer T statistical models e

Nearest neighbor, group-sparse classification, random walk

By considering such settings, we aim to understand transformers’:
Compatibility with classic models?
Adaptivity to a variety of classic tasks?

Capability to capture underlying statistical structures?

We will give learning guarantees & interpretations of the trained model.
04/29

Overview

Transformers as in-context one-nearest neighbor predictors

Zihao Li, Yuan Cao, Cheng Gao, Yihan He, Han Liu, Jason Klusowski, Jianging Fan, and Mengdi
Wang. "One-layer transformer provably learns one-nearest neighbor in context." NeurlPS 2024

Transformers as group-sparse linear predictors

Chenyang Zhang, Xuran Meng, and Yuan Cao. "Transformer learns optimal variable selection In
group-sparse classification." ICLR 2025

Transformers as random walk predictors

Wei Shi and Yuan Cao. "Towards Understanding Transformers in Learning Random Walks.”
submitted.

05/29

Transformers Learn One-Nearest Neighbor In Context

06/29

In context learning

In Context Learning (ICL). Transformers can solve tasks solely relying on task-specific prompts,
without the need for fine-tuning.

07/29

In context learning

In Context Learning (ICL). Transformers can solve tasks solely relying on task-specific prompts,
without the need for fine-tuning.

A classic theoretical setup: in-context linear regression [Zhang et al., 2023, Bai et al. 2024, ...]

07/29

In context learning

In Context Learning (ICL). Transformers can solve tasks solely relying on task-specific prompts,
without the need for fine-tuning.

A classic theoretical setup: in-context linear regression [Zhang et al., 2023, Bai et al. 2024, ...]

X; X, ... Xy X

query
Input matrix: H= |y, » ... yv O
Pi P --- Pn pquery

07/29

In context learning

In Context Learning (ICL). Transformers can solve tasks solely relying on task-specific prompts,
without the need for fine-tuning.

A classic theoretical setup: in-context linear regression [Zhang et al., 2023, Bai et al. 2024, ...]

X.. X c R4

1> “*query

Input matrix: H= |y, » ... yv O

07/29

In context learning

In Context Learning (ICL). Transformers can solve tasks solely relying on task-specific prompts,
without the need for fine-tuning.

A classic theoretical setup: in-context linear regression [Zhang et al., 2023, Bai et al. 2024, ...]

X.. X c R4

1> “*query

Input matrix: H =

“Positional encoding”

07/29

In context learning

In Context Learning (ICL). Transformers can solve tasks solely relying on task-specific prompts,
without the need for fine-tuning.

A classic theoretical setup: in-context linear regression [Zhang et al., 2023, Bai et al. 2024, ...]

X.. X c R4

1> “*query

Input matrix: H =

“Positional encoding”

Output: [selt-attention(H)| ;, | yy1

07/29

In context learning

In Context Learning (ICL). Transformers can solve tasks solely relying on task-specific prompts,
without the need for fine-tuning.

A classic theoretical setup: in-context linear regression [Zhang et al., 2023, Bai et al. 2024, ...]

d
X;, Xquery € R
Input matrix: H =

“Positional encoding”

Output:

[selt-attention(H)| ;, | yy1

07/29

In context learning

In Context Learning (ICL). Transformers can solve tasks solely relying on task-specific prompts,
without the need for fine-tuning.

A classic theoretical setup: in-context linear regression [Zhang et al., 2023, Bai et al. 2024, ...]

d
X, Xquery € R

Input matrix: H =

“Positional encoding”

Output:

[selt-attention(H)| ;, | yy1

The desired output should give the result of:

(i) performing linear regression on {(X;, y;) }?;1 and obtain linear model w:

(i) calculating the predicted value (W, Xquery>'

07/29

In context learning

In Context Learning (ICL). Transformers can solve tasks solely relying on task-specific prompts,
without the need for fine-tuning.

A classic theoretical setup: in-context linear regression [Zhang et al., 2023, Bai et al. 2024, ...]

d
X, Xquery € R

“Positional encoding”

In-context linear regression

(i) performing linear regression on {(X;, y;) }?;1 and obtain linear model w:

(i) calculating the predicted value (W, X

07/29

In context learning

In Context Learning (ICL). Transformers can solve tasks solely relying on task-specific prompts,
without the need for fine-tuning.

A classic theoretical setup: in-context linear regression [Zhang et al., 2023, Bai et al. 2024, ...]

d
X, Xquery € R

“Positional encoding”

In-context linear regression

(i) performing linear regression on {(X;, y;) }?;1 and obtain linear model w:

(i) calculating the predicted value (W, X

Can transformers be trained to perform one-nearest neighbor prediction?7.9

In-context one-nearest neighbor prediction

X X ... Xy Xjery
Input matrix: H=[h;,hy,....;hyh . I= [y, » ... y 0 [&RV
0 0 ... 0 1

08/29

In-context one-nearest neighbor prediction

X X ... Xy Xjery
Input matrix: H=[h;,hy,....;hyh . I= [y, » ... y 0 [&RV
0 0 ... 0 1

Response: result of one nearest neighbor prediction

Vi, 1 = arg min |[X

— X|[».
i€V query 112

08/29

In-context one-nearest neighbor prediction

X; X3 oo Xy Xguery

Input matrix: H=[h;,hy,....;hyh . I= [y, » ... y 0 [&RV
0 0 ... 0 1

Response: result of one nearest neighbor prediction

Vi, 1 = arg min |[X

— X:|5.
eV query 112

We suppose that the data are drawn from a distribution satisfying:

X e R?: i.i.d. sampled from U(S%™1)
‘yl = {il} : _[yiyj‘xl:N] — Oa _[yl-z‘XI:N] — 1’

08/29

One-layer transformer model

Self-attention layer with the value matrix fixed as identity:

self-attention(H) = H - softmax(H' WH),

fw(H) = [selt-attention(H)] ;

1,N

1

09/29

One-layer transformer model

Self-attention layer with the value matrix fixed as identity:

self-attention(H) = H - softmax(H' WH),
Jw(H) = [self-attention(H)];, | n,

We consider minimizing the population square loss with gradient descent:

. 1 .
Loss function: L(W) — 5 . _{Xiayi}iE[N]’XCluery[(fW(H) - yl*)] '

0 0
Gradient descent: WD — WO = 5. Vo (W), WO = ((dg)x(dﬂ) d:) .
d+1 -

The constant 0 > 0 serves as a mask to prevent the query from attending to itself.
09/29

One-layer transformer learns 1NN in context

Theorem. Suppose that

The mask ¢ in the initialization satisfies o = €2(poly(d)),
The length of context satisfies NV = Q(\/c_l log d),

Then L(WWY) converges to zero.

10/29

One-layer transformer learns 1NN in context

Theorem. Suppose that

The mask ¢ in the initialization satisfies o = €2(poly(d)),
The length of context satisfies NV = Q(\/c_l log d),

Then L(WWY) converges to zero.

One-layer transformers can be trained to perform in-context one-nearest neighbor prediction.

10/29

One-layer transformer learns 1NN in context

Theorem. Suppose that

The mask ¢ in the initialization satisfies o = €2(poly(d)),
The length of context satisfies NV = Q(\/c_i log d),

Then L(WWY) converges to zero.

One-layer transformers can be trained to perform in-context one-nearest neighbor prediction.

Note that... Predictor: fiv(H) = [y;, ..., Yy, 0] - SoftmaX(HTthuery).

Target: Y, ™ = argmin ||X
JEIN]

query Xj”Z'

10/29

One-layer transformer learns 1NN in context

Theorem. Suppose that

The mask ¢ in the initialization satisfies o = €2(poly(d)),
The length of context satisfies NV = Q(\/c_i log d),

Then L(WWY) converges to zero.

One-layer transformers can be trained to perform in-context one-nearest neighbor prediction.

Note that... Predictor: fiv(H) = [y;, ..., Yy, 0] - SoftmaX(HTthuery).

Target: Y, ™ = argmin ||X
JEIN]

query Xj”Z'

The transformer can be trained to perform appropriate token selection!
10/29

One-layer transformer learns 1NN in context

Theorem. Suppose that

The mask ¢ in the initialization satisfies o = €2(poly(d)),
The length of context satisfies NV = Q(\/c_l log d),

Then L(WWY) converges to zero.

One-layer transformers can be trained to perform in-context one-nearest neighbor prediction.

Note that... Predictor: fiv(H) = [y;, ..., Yy, 0] - SoftmaX(HTthuery).

Target: Y, ™ = argmin ||X
JEIN]

query Xj”Z'
“Nearest neighbor selector”

The transformer can be trained to perform appropriate token selection!
10/29

Prediction performance under distribution shift

We also study the performance of the transformer trained by 1" gradient descent iterations on
new test data with distribution shift.

Theorem. For any data satisfying |y;| < R, X; € S4=1 and

IX; — Xgueryll3 = X = Xgueryll3 + 8 for all j with y; # Y.

query query

It holds that
Test loss < 0(R2N2T‘POIY(N’d)5) .

11/29

Training loss

0.8

—
N

=
o

-
o

=
IN

-
W

-
N

—
p—

Experiments

Training loss under uniform distribution over the sphere Prediction performance under distribution shift
— d =8, N =16
;\\ 08 | —— d=8, N =32
\ \ —— d =38, N =64
\ d =16, N =32
0.6
N
2]
o
® 0.4
o 0
0.2
L
0.0 -
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Gradient descent iterations Gradient descent iterations

Training (left) and test loss (right) curves under gradient descent, with different dimensions and context sizes. The
test contexts are generated with a boundary separation of 6 = 0.1. 12/29

Transformers Learn Optimal Variable Selection in
Group-Sparse Classification

13/29

Group-sparse linear classification

Consider a classification task: X ~ N(0, 67 - L),y = sign({X, f*)).

14/29

Group-sparse linear classification
. T = p) . —
Consider a classification task: X ~ N(0, oy - L), y = sign((X, f*)).

Suppose that index sets G, ..., G, give a predefined partition of { 1,...,p}.

14/29

Group-sparse linear classification
. T = p) . —
Consider a classification task: X ~ N(0, oy - L), y = sign((X, f*)).

Suppose that index sets G, ..., G, give a predefined partition of { 1,...,p}.

The learning problem is “group sparse” if §* satisfies that

supp(f*) := tk € [p] : [f*]; # 0} C GF,

where j* € [D] is the index of label-relevant group.

14/29

Solving group-sparse classification with transformers

Let p = dD with d denoting the dimension of each group. We can then reshape
the feature vector X into

X =[X{,X,, ..., Xp],

where each column X; = [X]Gj ~ N (0, Gfld).

15/29

Solving group-sparse classification with transformers

Let p = dD with d denoting the dimension of each group. We can then reshape
the feature vector X into

X =[X{,Xy, ..., Xp],

where each column X; = [X]g ~ N0, 671).

The desired output is then

Yy = sign((xj*, vE)),

where v* = [ﬁ*]Gj* c |

15/29

Solving group-sparse classification with transformers

Let p = dD with d denoting the dimension of each group. We can then reshape
the feature vector X into

X =[X{,Xy, ..., Xp],

where each column X; = [X]Gj ~ N (0, Gfld).

The desired output is then

where v* = [ﬂ*]Gj* c |

15/29

Solving group-sparse classification with transformers

Let p = dD with d denoting the dimension of each group. We can then reshape

the feature vector X into

+ positional encodings
X =[X,X,....Xnl, D >

12 2 D D
p;eR

where each column X; = [X]Gj ~ N (0, Gfld).

The desired output is then

where v* = [ﬂ*]Gj* c |

15/29

One-layer transformer

Consider a scalar-output one-layer transformer model:
D

f(H,v,W) =) v Hsoftmax(H' Wh)
i=1

16/29

One-layer transformer

Consider a scalar-output one-layer transformer model:
D

f(H,v,W) =) v Hsoftmax(H' Wh)

Population cross-entropy loss:

L(Va W) — _(X,y) [f(y .f(Ha v, W))] ’
where £ (a) = log(1 + exp(—a)) is the cross-entropy loss.

16/29

One-layer transformer

Consider a scalar-output one-layer transformer model:
D

f(H,v,W) =) v Hsoftmax(H' Wh)

Population cross-entropy loss:

L(Va W) — _(X,y) [f(y .f(Ha v, W))] ’
where £ (a) = log(1 + exp(—a)) is the cross-entropy loss.

Gradient descent:

vt = vy _ V. L(v?Y, W), Wit — WO _ Vw L(vY, WD),

with zero initialization: v(¥) = Od+D, WO = O(d+D)><(d+D)' 16/29

Transformers can solve group-sparse linear classification

Theorem. For any € > 0, suppose that D = w(log?(1/¢)), d < O(poly(D)), o.,n = 0O(1).
Then there exists

1
D3¢3)’

r=0(D’v

such that the following conclusions hold:

17/29

Transformers can solve group-sparse linear classification

Theorem. For any € > 0, suppose that D = w(log?(1/¢)), d < O(poly(D)), o.,n = 0O(1).
Then there exists

1
D3¢)’

r=0(D’v
such that the following conclusions hold:

> Self-attention extracts the variables from the label-relevant group: w.h.p.,
ST > 1 —exp(=©(D)), Vj € [D].

17/29

Transformers can solve group-sparse linear classification

Theorem. For any € > 0, suppose that D = w(log?(1/¢)), d < O(poly(D)), o.,n = 0O(1).
Then there exists

1
D3¢3)’

r=0(D’v
such that the following conclusions hold:

> Self-attention extracts the variables from the label-relevant group: w.h.p.,

.1 Variable selection

17/29

Transformers can solve group-sparse linear classification

Theorem. For any € > 0, suppose that D = w(log?(1/¢)), d < O(poly(D)), o.,n = 0O(1).

Then there exists

r=0(D’v

1
D3¢3)’

such that the following conclusions hold:

> Self-attention extracts the variables from the label-relevant group: w.h.p.,

.1 Variable selection

» The value vector v successfully learns the ground truth classifier:

v = [V(IT*)T, 0,]', and

normalized(v(lT*)) — V*

<eD exp(—0O(1/D)).

17/29

Transformers can solve group-sparse linear classification

Theorem. For any € > 0, suppose that D = w(log?(1/¢)), d < O(poly(D)), o.,n = 0O(1).
Then there exists

1
D3¢3)’

r=0(D’v
such that the following conclusions hold:

> Self-attention extracts the variables from the label-relevant group: w.h.p.,

SJ(*T j.) > 1 —exp(—0O(D)), Vj € | D] .| variable selection

» The value vector v successfully learns the ground truth classifier:

Optimal linear classification on selected variables

17/29

Transformers can solve group-sparse linear classification

Theorem. For any € > 0, suppose that D = w(log?(1/¢)), d < O(poly(D)), o.,n = 0O(1).
Then there exists

1
D3¢)’

r=0(D’v
such that the following conclusions hold:

> Self-attention extracts the variables from the label-relevant group: w.h.p.,
SJ(*T j.) > 1 —exp(—0O(D)), Vj € | D] .| variable selection

» The value vector v successfully learns the ground truth classifier:

> The loss is sufficiently minimized: Optimal linear classification on selected variables

LV W)Y = @(e AD7?).

17/29

Classification with variable selection

D
Recall the prediction model: f(H,v, W) = Z VTHsoftmaX(HTWhj)

J=1

18/29

Classification with variable selection

D
Recall the prediction model: f(H,v, W) = Z VTHsoftmaX(HTWhj)

J=1

X1 || X2 Xp
T T
S
xV ! ~0'
P || P2
H
~ ej*

18/29

Classification with variable selection

D
Recall the prediction model: f(H,v, W) = Z VTHsoftmaX(HTWhj)

j=1

Variable selector

X1 || X2 Xp
T T
S
S
xV " ~0'
P || P2
H ~ o
~ Y

K

18/29

Classification with variable selection

D
Recall the prediction model: f(H,v, W) = Z VTHsoftmaX(HTWhj)

j=1

Variable selector

18/29

Classification with variable selection

D
Recall the prediction model: f(H,v, W) = Z VTHsoftmaX(HTWhj)

j=1

Variable selector
Linear classification

18/29

Classification with variable selection

D
Recall the prediction model: f(H,v, W) = Z VTHsoftmaX(HTWhj)

j=1

Variable selector
Linear classification

T T
A8 Vs
S
xV " ~0'

18/29

Value of Training Loss

Value of Training Loss

Experiments - pretraining

Training Loss in Gradient Descent Cos Angle of V(lt) and v* Norm Ratio ||V§t)||/||v(1t)|| Heatmap of the Attention Matrix with Values
1.0+ 1.0 S 0.016 0.010 0.018 0.011 0.007 0.010
0.7 1
0.8 1 0.8 1 0.6 1 B 0.368 0.922 0.911 0.920 0.934
©
)
* S 0.5 - 0.6
0.64 © 0.6- c BB 0.018 0.021 0.031 0.033 0.018
. g - =
= § 0.4 - S
0 Y—
0 4 | 8 0.4 _ 8 O 3 | +) _ 0.007 _ 0.4
' S
0,0 1
= 0.2
0o 0.2 - l P 0.051 0.016 0.012 0.015 0.007 0.012
0.1 1
| 0034 0.021 0.015 0.014 0.025 0.008
0.0 0.0 @ 0.0+ e
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 J 5 3] . .
Epoch Epoch Epoch Column
Training Loss in Gradient Descent Cos Angle of V(lt) and v* Norm Ratio ”Vét)”/llv(lt)” Heatmap of the Attention Matrix with Values
1.0~ ~ ®
0.6 05 — 0.011 0.020 0.034 0.045
0.8 1
0.5 1
2 0.4
)
ke ~ 0.898 0.927 0.886 0.827 - 06
0.4 - 9 0.6
> € 03l
C fe) 0.3 3
< 2 2
0.3 @ b
U 04 T ()] -0.4
So0.2- S 0.026 0.020 0.015 0.046
0.2 1 g
0.2 0.1
0.1 1
S 0.065 0.033 0.082
0.0 e 0.01 e
0'0 L T
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 i é é 4'1
Epoch Epoch Epoch Column

Training loss, cosine similarity, norm ratio, and attention score for (n, d, D) = (500,4,6) and (n, d, D) = (200,2,4)

respectively when set j* = 2.
19/29

Transformers Learn Random Walk Prediction by
Attending to the Direct Parent State

20/29

A simple random walk prediction task

Consider a circle with K nodes.

21/29

A simple random walk prediction task

Consider a circle with K nodes.

A walk on the circle: the process where a ‘walker’
moves step-by-step among the nodes of the circle.

21/29

A simple random walk prediction task
Consider a circle with K nodes.

A walk on the circle: the process where a ‘walker’
moves step-by-step among the nodes of the circle.

State s; € | K|: the location of the walker at the i-th
step (1 € |N]).

21/29

A simple random walk prediction task

Consider a circle with K nodes.

A walk on the circle: the process where a ‘walker’
moves step-by-step among the nodes of the circle.

State s; € | K|: the location of the walker at the i-th
step (1 € |N]).

Suppose that s; € [K| is uniformly chosen. At
each step, the walker goes or

21/29

A simple random walk prediction task

Consider a circle with K nodes.

A walk on the circle: the process where a ‘walker’
moves step-by-step among the nodes of the circle.

State s; € | K|: the location of the walker at the i-th
step (1 € |N]).

Suppose that s; € [K| is uniformly chosen. At
each step, the walker goes or

Goal: predict the location of the next step s, based
on the historical locations sy, ..., Sy_1-

21/29

A simple random walk prediction task

Goal: predict the location of the next step s, based
on the historical locations sy, ..., Sy_;.

Fori € [N — 1], denote by X; € | K the one-hot
encoding of 5; € [K]. Then

P(X; Xy, ..o X) = P(x; | x,_) =TT ',

22/29

A simple random walk prediction task

Goal: predict the location of the next step s, based
on the historical locations sy, ..., Sy_;.

Fori € [N — 1], denote by X; € | K the one-hot
encoding of 5; € [K]. Then

Markov property

22/29

A simple random walk prediction task

Goal: predict the location of the next step s, based
on the historical locations sy, ..., Sy_;.

Fori € [N — 1], denote by X; € | X the one-hot
encoding of 5; € [K]. Then

Markov property
where 1I* is the ground-truth transition matrix:

22/29

Random walk prediction with transformers

Input matrix: H =

X1
P

X5
P>

XN—1
Pyn-1

0
Py

€ |

(K-

-M)HXN

23/29

Random walk prediction with transformers

X; X ... Xy 0

Input matrix: H = e

Mutually orthogonal positional encodings

(K-

-M)HXN

23/29

Random walk prediction with transformers

X; X ... Xy 0

Input matrix: H = e

Mutually orthogonal positional encodings

Label: y = SN ~ H*TXZ-_I

(K-

-M)HXN

23/29

Random walk prediction with transformers

X; X3 ... Xy 0 c RK+M)XN

Input matrix: H =

Mutually orthogonal positional encodings

Label: y = SN ~ H*TXZ-_I

Transformer model: f(H,V, W) = VXSOftmaX(HTWhN)

23/29

Random walk prediction with transformers

X; X3 ... Xy 0 (K+M)XN

Transformer model: f(H, V, W) = VXboftmax(H' Wh,))

We do not include the positional encodings here.

23/29

Random walk prediction with transformers

X; X3 ... Xy 0 c RK+M)XN

Input matrix: H =

Mutually orthogonal positional encodings

Label: Yy =35y~ H*TXZ-_I

Transformer model: f(H,V, W) = OftmaX(HTWhN)

We do not include the positional encodings here.

Population log loss: L(V, W) = = (X.y) lc)g[eyT f(H, V. W) + €]

Gradient descent:
VD =y _ Vv L(VY, W), With — W0 _ Vw L(V®, Wy,

with zero initialization: V@ = 0gsx, WO = 04, vrcckinn 2329

Transformers learn random walk prediction

Theorem. Suppose that 0 < p < 1, and 5, € = ©O(1). Under certain conditions, there exists T, = O(1),

such that for any polynomial iteration number 1" > 1, the following results hold:

24/29

Transformers learn random walk prediction

Theorem. Suppose that 0 < p < 1, and 5, € = ©O(1). Under certain conditions, there exists T, = O(1),

such that for any polynomial iteration number 1" > 1, the following results hold:

» Softmax attention selects the “direct parent” token:
softmax(H"Wh,)| oy 2 1= exp(=QV)), [softmax(HTW(T)hN)]j < exp(—Q(N)).

24/29

Transformers learn random walk prediction

Theorem. Suppose that 0 < p < 1, and 5, € = ©O(1). Under certain conditions, there exists T, = O(1),

such that for any polynomial iteration number 1" > 1, the following results hold:

» Softmax attention selects the “direct parent” token: Selector of the parent token

24/29

Transformers learn random walk prediction

Theorem. Suppose that 0 < p < 1, and 5, € = ©O(1). Under certain conditions, there exists T, = O(1),

such that for any polynomial iteration number 1" > 1, the following results hold:

» Softmax attention selects the “direct parent” token: Selector of the parent token

> The value matrix converges to the true transition matrix in direction:

Vm : (1)
=o| —).

(1) *T

VO 0T ||\ 7

24/29

Transformers learn random walk prediction

Theorem. Suppose that 0 < p < 1, and 5, € = ©O(1). Under certain conditions, there exists T, = O(1),

such that for any polynomial iteration number 1" > 1, the following results hold:

» Softmax attention selects the “direct parent” token: Selector of the parent token

I’
|VD|| I ¢

Optimal probability transition on the parent token

24/29

Transformers learn random walk prediction

—

Nl & | = | &

25/29

Transformers learn random walk prediction

Token selector

—

Nl & | = | &

25/29

Transformers learn random walk prediction

Token selector

0 0
0 0
1
0 0
1 0
0 0
S XN-1

25/29

Transformers learn random walk prediction

Token selector One-step probability transition
0 0
0 0
1
0 0
1 0
0 0
S XN-1

25/29

Transformers learn random walk prediction

Token selector One-step probability transition

—

&S | & | = SO &

Nl & | = | &

VII' Xn-1 Py lxy_y)

25/29

Transformers learn random walk prediction

Corollary. Suppose that 0 < p < 1, and 7, € = ©O(1). Under certain conditions, there exists 7, = O(1),

such that for any polynomial iteration number 1" > 1, the following results hold:

26/29

Transformers learn random walk prediction

Corollary. Suppose that 0 < p < 1, and 7, € = ©O(1). Under certain conditions, there exists 7, = O(1),

such that for any polynomial iteration number 1" > 1, the following results hold:

» The transformer converges to the optimal predictor:

f(H, VD, W)

[£CH, VI, W),

“T

XN—-1

()

26/29

Transformers learn random walk prediction

Corollary. Suppose that 0 < p < 1, and 7, € = ©O(1). Under certain conditions, there exists 7, = O(1),

such that for any polynomial iteration number 1" > 1, the following results hold:

» The transformer converges to the optimal predictor:

f(H, VD, W)

[£CH, VI, W),

“T

XN—-1

2_0(ﬁ>

» The trained transformer achieves optimal prediction accuracy:

P . [Pred[f(X, VIV, WD)] =y

= max{p,l — p}.

Here we define: Pred(f) = min { Jj € [K] : [f]; = max{[f];}

€| K]

f

26/29

Transformers learn random walk prediction

Corollary. Suppose that 0 < p < 1, and 7, € = ©O(1). Under certain conditions, there exists 7, = O(1),

such that for any polynomial iteration number 1" > 1, the following results hold:

» The transformer converges to the optimal predictor:

f(H, VIO, W) T _0 (>
X —
(), W(T) N
Hf(Ha Vv ’ W)HZ) ﬁ
> The trained transformer achieves optimal prediction accuracy: Optimal accuracy

P [Pred[FCX, VO, W) = y] =

Here we define: Pred(f) = min { Jj € [K] : [f]; = max{[f];}

€| K]

f

26/29

Failure in learning “deterministic walks” withp = 0 or 1

Theorem. Suppose that p = 0 or 1, K is a constant integer, and N = rK + 1 with » > 1. Then for any loss
function £(-), any learning rate # > 0, and any 7' > 0, it holds that

1

27/29

Failure in learning “deterministic walks” withp = 0 or 1

Theorem. Suppose that p = 0 or 1, K is a constant integer, and N = rK + 1 with » > 1. Then for any loss
function £(-), any learning rate # > 0, and any 7' > 0, it holds that

1
I]D(X,y) [Pred[f(X, VD, W(T))] = y] = Random guess

27/29

Failure in learning “deterministic walks” withp = 0 or 1

Theorem. Suppose that p = 0 or 1, K is a constant integer, and N = rK + 1 with r > 1. Then for any loss
function £(-), any learning rate # > 0, and any 7' > 0, it holds that

|
Py [Pred[f(X, VIO W] = y] = Random guess

Moreover, with probability 1, for all 7' > 0, it holds that

VO & 1gy [softmax(H'WDhy)| = - = [softmax(H'W"hy)]

1 N—1"

27/29

Failure in learning “deterministic walks” withp = 0 or 1

Theorem. Suppose that p = 0 or 1, K is a constant integer, and N = rK + 1 with r > 1. Then for any loss
function £(-), any learning rate # > 0, and any 7' > 0, it holds that

|
Py [Pred[f(X, VIO W] = y] = Random guess

Moreover, with probability 1, for all 7' > 0, it holds that

VO & 1gy [softmax(H'WDhy)| = - = [softmax(H'W"hy)]

1 N—1"

At zero initialization, softmax attention serves as an average, and the average
X 1 is not informative at all!

27/29

Failure in learning “deterministic walks” withp = 0 or 1

Theorem. Suppose that p = 0 or 1, K is a constant integer, and N = rK + 1 with r > 1. Then for any loss
function £(-), any learning rate # > 0, and any 7' > 0, it holds that

|
Py [Pred[f(X, VIO W] = y] = Random guess

Moreover, with probability 1, for all 7' > 0, it holds that

VO & 1gy [softmax(H'WDhy)| = - = [softmax(H'W"hy)]

1 N—1"

At zero initialization, softmax attention serves as an average, and the average
X 1 is not informative at alll = Optimization is on a “ridge” of bad points.

27/29

Failure in learning “deterministic walks” withp = 0 or 1

Theorem. Suppose that p = 0 or 1, K is a constant integer, and N = rK + 1 with r > 1. Then for any loss
function £(-), any learning rate # > 0, and any 7' > 0, it holds that

|
Py [Pred[f(X, VIO W] = y] = Random guess

Moreover, with probability 1, for all 7' > 0, it holds that

VO & gy [softmax(H'Why)| = - = [softmax(H'W " hy)]

1 N—1"

At zero initialization, softmax attention serves as an average, and the average
X 1 is not informative at alll = Optimization is on a “ridge” of bad points.

Random initialization overcomes the issue to a certain extent.

27/29

Experiments

p=1/2:
K =120, N=101

accuracy

0.5 -

0.4

o
w

0.2

0.1-

Accuracy

Accuracy

AN AN NA

10 20 30 40 50
iteration

2.00

- 1.75

- 1.50

- 1.25

1.00

0.75

0.50

0.25

0.00

Softmax

1.0

0.8 1

0.4 1

0.2

0.0

Softmax attention

Token Seletion

190

1

11

21

31

41

51
Position

61

71

81

91

101

28/29

Experiments

Accuracy
Accuracy
el r/“\’/AVAVPVAVNVF\\‘\/\\/\,\//AV/«\\//\/\\f“\
0.4 -
= 1/2: 2
p — n %
5 0.3 -
o
©
K =20, N= 101
0.2 -
0.1
0 10 20 30 40 50
iteration
Accuracy
0.30
0.25 -
0.20 1
— 1] >
p — n 8
5 0.15 -
o
©
K=20,N=101 |
0.05 A M\/\/\/\/\/\/_’\/\/v\/\/\/
0.00 | | I I I I
0 10 20 30 40 50
iteration

2.00

- 1.75

- 1.50

- 1.25

1.00

0.75

0.50

0.25

0.00

2.00

- 1.75

- 1.50

- 1.25

1.00

0.75

0.50

0.25

0.00

Softmax attention

Token Seletion

1.0 -

0.8 A

Softmax

0.4 -

0.2

190

1 11 21 31 41 51 61 71 81 91 101
Position

0.0

Token Seletion

0.0200
0.0175 A
0.0150 A

0.0125 A

0.0100 A
0.0075 A
0.0050 A
0.0025 A
0.0000
51

Softmax

1 11 21 31 41
Position

61 71 81 91 101

28/29

Summary

By gradient descent based training, a one-layer transformer can handle different
classic statistical learning tasks:

29/29

Summary

By gradient descent based training, a one-layer transformer can handle different
classic statistical learning tasks:

When the data follows a 1-NN model, the trained transformer can learn the 1-NN
prediction rule, with softmax attention serves as a nearest neighbor selector;

29/29

Summary

By gradient descent based training, a one-layer transformer can handle different
classic statistical learning tasks:

When the data follows a 1-NN model, the trained transformer can learn the 1-NN
prediction rule, with softmax attention serves as a nearest neighbor selector;

When the data follows a group-sparse model, the trained transformer can capture
the sparsity pattern, with softmax attention serves as a variable selector;

29/29

Summary

By gradient descent based training, a one-layer transformer can handle different
classic statistical learning tasks:

When the data follows a 1-NN model, the trained transformer can learn the 1-NN
prediction rule, with softmax attention serves as a nearest neighbor selector;

When the data follows a group-sparse model, the trained transformer can capture
the sparsity pattern, with softmax attention serves as a variable selector;

When the data follows a random walk, the trained transformer can capture the
Markov property, with softmax attention serves as a parent token selector.

29/29

Summary

By gradient descent based training, a one-layer transformer can handle different
classic statistical learning tasks:

When the data follows a 1-NN model, the trained transformer can learn the 1-NN
prediction rule, with softmax attention serves as a nearest neighbor selector;

When the data follows a group-sparse model, the trained transformer can capture
the sparsity pattern, with softmax attention serves as a variable selector;

When the data follows a random walk, the trained transformer can capture the
Markov property, with softmax attention serves as a parent token selector.

Thank you!

29/29

Self-attention in transformers

self-attention(X) = WVXsoftmax(XTWIT{WQX),

Self-attention in transformers

self-attention(X) = WVXsoftmax(XTWIT{WQX),

[selt-attention(X)].; = WVXsoftmaX(XTWIEWQXi)

Self-attention in transformers

self-attention(X) = WVXsoftmax(XTWIT{WQX),

[selt-attention(X)].; = WVXsoftmaX(XTWIT{WQXi) — Z a;; - WyX;

Self-attention in transformers

self-attention(X) = WVXsoftmaX(XTWTWQX) 3cores

[self-attention(X)]., = Wy, softmaX(XTWTWQX 2 - WX,

Self-attention in transformers

self-attention(X) = WVXsoftmax(XTWTWQX)

Scores

[self-attention(X)]., = Wy, softmaX(XTWTWQX 2 WVX.

Layer: Attention: | All v| Layer: Attention: &-

The The The The
Doctor Doctor Doctor Doctor
asked asked asked asked

the the the the
Nurse Nurse Nurse Nurse
a a d a
question question question question
She She He He

said said asked asked

Diverse roles of self-attention

Scores
— |
[selt-attention(X)]; = Wy, SOf’[IIlaX(XTW};WQXi = Z Wyx;
J
average, if z~ 0,
softmax(z) ~ < weighted average, it ||z||, 1s neither too large nor too small,

'hard max’, it ||z||, = oo,

Diverse roles of self-attention

Scores

— |
- _ TwW _
[self-attention(X)].; = W Xisoftmax(X W W x,) = Z Wox,
J
average, if z~ 0,
softmax(z) ~ < weighted average, it ||z||, 1s neither too large nor too small,
£ el — oo
0
0
The largest entry inz —»| |
0

Diverse roles of self-attention

Scores

— {
[selt-attention(X)] ; = Wy, SOftIIlaX(XTW};WQXi = Z Wyx;
J
average, if z~ 0,
softmax(z) ~ < weighted average, it ||z||, 1s neither too large nor too small,
£ el — oo
0
0
The largest entry inz —>| | —> “Token/variable selection”
0

Proof sketch of in-context nearest neighbor predictor

Consider the parameter matrix W as a block matrix:
Wi W Wi,

W= [W; Wy Wy
Wi Wi Wi

Proof sketch of in-context nearest neighbor predictor

Consider the parameter matrix W as a block matrix:

Proof sketch of in-context nearest neighbor predictor

Consider the parameter matrix W as a block matrix:

Wi Wi Wy }d X X2 o XN Xquery
W= Wy Wy Wylil H=|y » ... y O
Wi Wi Wi }1 O O ... O 1

d 1 1

Proof sketch of in-context nearest neighbor predictor

Consider the parameter matrix W as a block matrix:

W, W, Wi jd X %2 - AN Rquery

W= Wy Wy Wylil H=|y » ... y O
Wi Wi Wil O O ... O 1
711

A key observation is that

N
— [E T T T T
VW“L(W@) B [Z gi(t)(xi XN+1) XXy T gﬂgt)(xi*XNH) RV VAR K
=1

where gl.k(x) : R — R, i € [N] are functions that map scalars to scalars.

Proof sketch of in-context nearest neighbor predictor

Consider the parameter matrix W as a block matrix:

W, W, Wi jd X %2 - AN Rquery

W= Wy Wy Wylil H=|y » ... y O
Wi Wi Wil O O ... O 1
711

A key observation is that

N
] [Z gl,(t)(xi Xn+1) X XN T gﬂgt)(xi*XNH) IRERIAS Y
=1

where gl.k(x) : R - R, 1 € | N] are functions that map scalars to scalars.

UVy, LWU' = Vi, L(W") for all orthogonal matrix Ul = VWHL(W(”) x I

Proof sketch of in-context nearest neighbor predictor

Consider the parameter matrix W as a block matrix:

W, W, Wi jd X %2 - AN Rquery

W= Wy Wy Wylil H=|y » ... y O
Wi Wi Wil O O ... O 1
711

A key observation is that

N
] [Z gl,(t)(xi Xn+1) X XN T gﬂgt)(xi*XNH) IRERIAS Y
=1

where gl.k(x) : R - R, 1 € | N] are functions that map scalars to scalars.

UVy, LWU' = Vi, L(W") for all orthogonal matrix Ul = VWHL(W(”) x I

Moreover, lejL(Wk) = (for all 7, j except for W, and Wj;!

Proof sketch of in-context nearest neighbor predictor

Proposition.

Along the optimization path of gradient descent, the weights has the form

WO = diag{£, ...,&",0, — £}, with &, & > 0.

~

d times

Proof sketch of in-context nearest neighbor predictor

Proposition.

Along the optimization path of gradient descent, the weights has the form

WO = diag{£!, ...,£",0, — &P}, with &, &) > 0.

—

d times

2.25
2.5 '1 2 00
1.75

1.50 "

§2

1.25 S
A

1.00 3

0.75

0.50

0.25

Proof sketch of in-context nearest neighbor predictor

Y) ' <X19 Xquery>

{t) ' <X29 Xquery>
softmax(H' W?PH) = softmax

gl(t) ' <XN’ Xquery>

_ £()
2

Proof sketch of in-context nearest neighbor predictor

{t) ' <X19 Xquery>

)
0 _HXI o Xquery”2
- (X5, X
o e 1% = X
softmax(H' W'H) = softmax : ~ hardmax
O (X X)
2
1 N> “*query —HXN— XqueryHZ
_ £(1)
2 — OO0

As £V > £ — 4 0.

Downstream task for group-sparse classification

Consider a downstream task, where the data { (X, y@)};ﬁ;l follow an arbitrary

~J)

distribution satisfying (i) X is sub-Gaussian, and (ii) y - (V¥, Xj*> > v almost surely.

Downstream task for group-sparse classification

Consider a downstream task, where the data { (X, y@)};ﬁ;l follow an arbitrary

distribution satisfying (i) X is sub-Gaussian, and (ii) y - (V¥, Xj*> > v almost surely.

We only assume the label-relevant group index j* to be the same as that in pre-
training, while the ground-truth linear vectors v* and v* can differ.

Downstream task for group-sparse classification

Consider a downstream task, where the data { (X, y@)};f;l follow an arbitrary

~J)

distribution satisfying (i) X is sub-Gaussian, and (ii) y - (V¥, Xj*> > v almost surely.

We only assume the label-relevant group index j* to be the same as that in pre-
training, while the ground-truth linear vectors v* and v* can differ.

Theorem. For any 0 > 0, under certain conditions, w.p. at least 1 — 0, the model fine-tuned
with online SGD achieves:

d + D)log? - [log(1/6
TesterrorSO((log n)+0< og()>.

v2n n

Downstream task for group-sparse classification

Consider a downstream task, where the data { (X, y@)};f;l follow an arbitrary

~J)

distribution satisfying (i) X is sub-Gaussian, and (ii) y - (V¥, Xj*> > v almost surely.

We only assume the label-relevant group index j* to be the same as that in pre-
training, while the ground-truth linear vectors v* and v* can differ.

Theorem. For any 0 > 0, under certain conditions, w.p. at least 1 — 0, the model fine-tuned
with online SGD achieves:

d + D)log? - [log(1/6
TesterrorSO((log n)+0< og()>.

v2n n

Sample complexity: Q((d + D)/e€);

Downstream task for group-sparse classification

Consider a downstream task, where the data { (X, y@)};f;l follow an arbitrary

~J)

distribution satisfying (i) X is sub-Gaussian, and (ii) y - (V¥, Xj*> > v almost surely.

We only assume the label-relevant group index j* to be the same as that in pre-
training, while the ground-truth linear vectors v* and v* can differ.

Theorem. For any 0 > 0, under certain conditions, w.p. at least 1 — 0, the model fine-tuned
with online SGD achieves:

d + D)log? - [log(1/6
TesterrorSO((log n)+0< og()>.

v2n n

Sample complexity: Q((d + D)/e€);

Sample complexity lower bound of linear logistic regression on vec(X) is Q(dD/¢).

Experiments - downstream task

Test Accuracy Test Accuracy
1.0 -
0.9 -
0.9 -
> >08'
O O
© 0.8 - ©
o >
O O
< <
» o 0.7
B 0.7 w
— —
0.6 - 0.6 -
0.5 - j 0.5 -
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Epoch Epoch

Test accuracy in the downstream task when utilizing the pre-trained W),

