Can LLMs solve compositional
tasks? A study of out-of-
distribution generalization

Yigiao Zhong (UW Madison Statistics)
HKU IDS, May 28, 2025



Collaborators

Jiajun Song, BIGAI Zhuoyan Xu, UW Madison

Paper: https://www.pnas.org/doi/10.1073/pnas.2417182122



https://www.pnas.org/doi/10.1073/pnas.2417182122

Are LLMs creative? Or are they a hype?

.« . _ Sparks of Artificial General Intelligence:
¢ TWO pO l.a Nzl ng (0) p INIONS Early experiments with GPT-4
* Sparks of artificial general intelligence Bric Homits  Eoo Komar | Boter Lee — ¥in Tot Lee | Yonahi L Seott Lundbers
Harsha Nori Hamid Palangi Marco Tulio Ribeiro Yi Zhang
* LLMs memorize facts, parrot the speech Microsoft Rescarch

* Intriguing phenomena: Emergent abilities
 Sudden emergence, sharp increase in accuracy
* In-context learning (ICL)
e Chain-of-thought (Col)

* Lack of scientific foundations
* Overloading notions

e Unclear model internals
e Lack of clear measurements




Does classical notions of generalization explain?
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Compositions and OOD generalization

» Qut-of-distribution (OOD) generalization: Piain # Prest
* In-distribution (ID) generalization: P .in = Prest
« Compositions and “reasoning”: benefits of multiple layers

Holy grail

* Howdo LLMs represent composition?

* When do we expect emergence?

* Whydo LLMs achieve OOD generalization?



Teaser: Evidence of OOD generalization

Realistic Task: “Symbolized language reasoning”

* Indirect object identification (10l)
* (normal)

“Then, Henry and Blake had a long argument. Afterwards Henry said to” 2> Blake
* (symbolized)

“Then, &” and #$ had a long argument. Afterwards &” said to” 2 #$

* In-context learning (ICL)
* (normal)

“baseballis sport, celery is plant, sheep is , volleyball is sport, lettuce is” 2 plant
* (symbolized)

“baseball is $#, celeryis !%, sheep is &%, volleyball is $#, lettuce is” 2 %

See Rong 2021, Wang et. al., ICLR 2023, Pan et. al., ACL 2023



* Draw 100 test prompts for each subtask, two versions (hnormal as
ID, symbolized as OOD)

* |Ol: [Subject] ... [Object] ... [Subject]...[Object]
*ICL: w1, f(71), %2, f(%2), ..., Tn, [(Tn) Where f :object — category

e Calculate Acc in multiple-choice form, random guess 1/2 (10l),
1/3 (ICL has 3 categories)

Llama2-7B | Falcon-7TB | Olmo-7B | Mistral-7B | Falcon2-11B | Llama3-8B
Normal 1 1 1 1 1 1
Symbolized 0.84 1 0.96 0.95 0.96 0.99
Llama2-7B | Falcon-7B | Olmo-7B | Mistral-7B | Falcon2-11B | Llama3-8B
Normal 1 1 1 1 1 1
Symbolized 0.81 0.45 0.79 0.45 0.82 0.90




Synthetic Task: “Learning copying with a simple Transformer”

AL BLIC)... (4], [B] ~ Rotexenpredelon, [A][B,[C]...[A],[B],[C]

s s#

~N

* Vocabulary size 64, sequence len 64, draw i.i.d. tokens from a
power law distribution to form “noisy background” in a prompt

« Sample segmentlen L € {10,11,...,19}uniformly, and then
sample a segment s™ of len L

* Place two copies of s# at random non-overlapping locations in the
prompts. Prompt format (x, s7 x, s7 )

See Olsson et. al., 2022



e OOD data

* Token distribution changed from power law to uniform
* Length of repeating segment changed from {10, 12, ... 19} to 25

* Model: minimal Transformer, 2-layer and 1-head

* No MLP, standard architecture (residual connection, LayerNorm, RoPE,
dropout)

* Trained on fresh samples (one-pass setting), autoregressive, standard
technique (AdamW)

* Simple for rule-based algorithms, but hard for classical general-
purpose ML methods (n-gram models, hidden Markov models)
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« Weak learning phase: rely on simple statistics of ID data and fail to generalize OOD
* Rule-learning phase: two-layer TF learns the rule of copying from ID data



What do we learn?

* Benefits of composition: two layer >> one layer
* Emergence of learning copying

* OOD generalization reasonably well

Goal of this talk:

Geometric (mechanistic) insights via experiments



A Primer on Transformer



Next token prediction
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A simple intro to self-attention

* Input or hidden states X € R7*d | T is seqlength, d is embed dim

attentlon matrix

H
MSA(X; W) := X + ) S Softmax XWQK]XT) XWOV,J-
M J=1 ~
residual stream stores QK circuit reads and OV 01rcu1t writes and
info from previous layer matches info from stream adds info to stream
Hidden Residual stream

states

Attn Head

Attn Head

4 ~

* Attention matrix: 1" x 1" similarities of hidden
states between pairs of hidden states

QK ov :
See Elhage et. al., 2021 Read [Ci"’"“ Softmex °ir°”"-‘ e
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What do hidden states represent?

* |n pre-Transformer age, word meaning is decomposed into vectors
of latent concepts/factors

WOMAN

MAN ///;7 ,/’/;7

UNCLE

KING

AUNT

QUEEN

QUEENS

KINGS R\\\
N\\\ QUEEN

KING

Word embedding, “gender” factor + “royalty” factor

e Classical stats: PCA and factor analysis, e.g., latent factor that drives
stock market or gene expression or network community structure

See Mikolov et. al., 2013



Linear representation hypothesis

* Dictionary learning: find of vectors as “base concepts”
* Dictionary size much larger than embedding dimension

* Then hidden state vector is a sparse linear combination of “base
concepts” (feature superposition)

symbols fruit

dessert mobile & IT

apple =0.09"dessert” + 0.11 “organism™ + (.16
“fruit” + 0.22"mobile&IT” + 0.42“other”.

* Anthropic and OpenAl’s interpretability research



Linear representation hypothesis

* A large literature on alignment, model editing [ubHzH, 2024]
£\ £>
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Emergence of Subspace Matching



Synthetic experiment “Learning copying with a simple Transformer”

N

..[A],[B],[C]...|A],[B] next-token prediction,  14),B],[C]...[A], [B],[C]

S~

* 2-layer 1-head no-MLP TF: TF(X) = MSA(MSA(X;W); W)

1stlayer MSA(X;W):= X + Softmax (XWqxX ) XWay
N ~ 4 ————

QK circuit reads and OV circuit writes and
matches info from stream @adds info to stream

What compositional
structure enables copying?
2" layer MSA(X;W):= X + Softmax (XWqgxX") XWy,
~ ~~ ~ —

QK circuit reads and OV circuit writes and
matches info from stream adds info to stream
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* Subspace matching: First layer “writing circuit” (OV) matches
second layer “reading circuit” (QK)

* Complementary roles: first layer focuses on positional info,
second layer token info

* Clear phase transition: critical thresholds in both diversity and
training steps
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LLM experiment “Symbolized language reasoning”

* Many attention heads in LLMs (even GPT2-
small has 12*12 heads)

* Ranking heads and screen top ~50 as

induction heads
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OQOD generalization depends crucially on IHs

* LLMs on normal prompts are insensitive to IH removal (memorization)
* |n contrast, LLMs on symbolized (OOD) prompts depend on IHs
 Same crucial dependence for Col on GSM8K

llama2-70b, CoT

-- original
0.1 IH_removal
—— random_removal

0 50 100 150 200 250



OQOD generalization depends crucially on IHs
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OQOD generalization depends crucially on IHs
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OQOD generalization depends crucially on IHs:
scaling experiments

Effect of Head Masking on Model ACC_MULTIPLE_CHOICE
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Common Subspace Representation Hypothesis



How subspace matching works in LLMs

* Multi-layer, multi-head, how do two layers match?
* Generalizes the linear representation hypothesis
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How subspace matching works in LLMs

e Multi-layer, multi-head, how do two layers match?
* Generalizes the linear representation hypothesis
* Bridge subspace in ideal form

V =span(Wov ) = Span(WgK’k)

from earlier layers

lov circuit] lov circuit]

Attn Head

1 9 K . 1 2 K
WOV’ WOV7 SR WOV Bridge Subspace v WQK’ WQK’ e WQK Attn Head
- - RS
aK ov l IQK circuitl IQK circuit]
QK ov
circuit Softmax circuit I to later layers circuit Softmax circuit

Previous-token head Induction head



Pairwise matching suggests shared global structure

visualize Wk Wov diagonal score distribution subspace-matching score distribution
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* Strong pairwise matching among top-ranked PTHs and IHs



Impact of removing bridge subspace

c Reduced acc under edited model
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* Calculate bridge subspace by pooled SVD: V' = svd, ([W}QK, Cee WgK])
* Two projection applied to weight matrices
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(Speculative) take-away messages



What do hidden states really represent

 Concept subspaces

symbols fruit

dessert mobile & IT



What do hidden states really represent

* Concept subspaces + rule subspaces
* Composedrule 1 (e.g., copying), composed rule 2 ...

* Enables OOD generalization, esp. in novel context (ICL, CoT)
composed rule 1

symbols fruit composed rule 2

dessert mobile & IT



Thank you!
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