

Can Language Models Compose Skills In-Context?

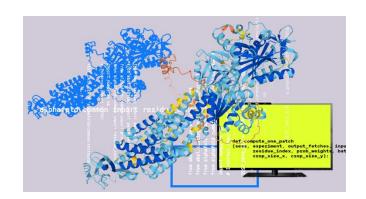
Zidong Liu, Zhuoyan Xu, Zhenmei Shi, Yingyu Liang @HKU workshop on Fundamental Al and Theoretical Machine Learning

Machine Learning/Al Progress

Computer Vision

Game Playing

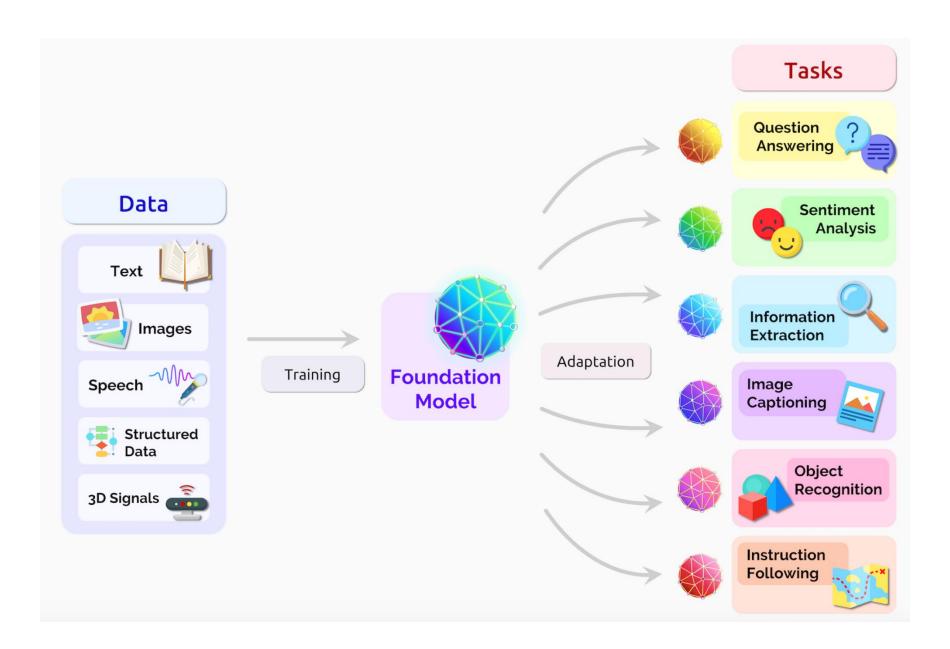
Natural Language Processing



Sciences

Chatbots

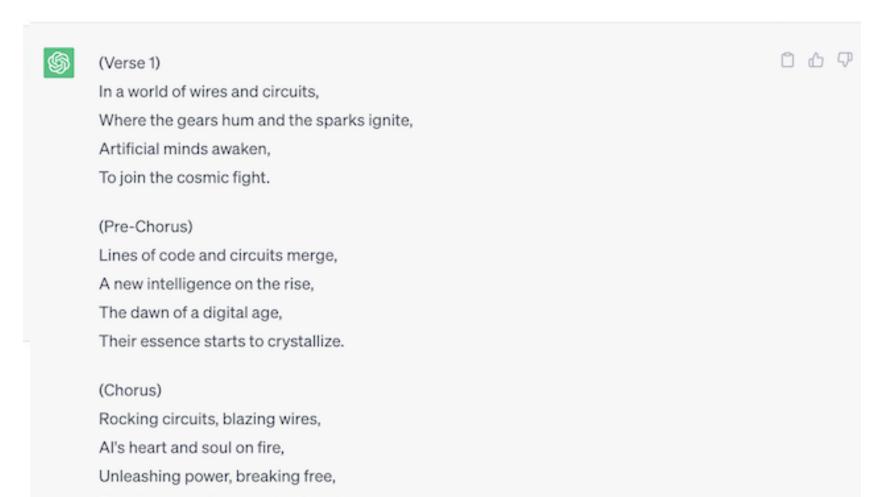
Arts

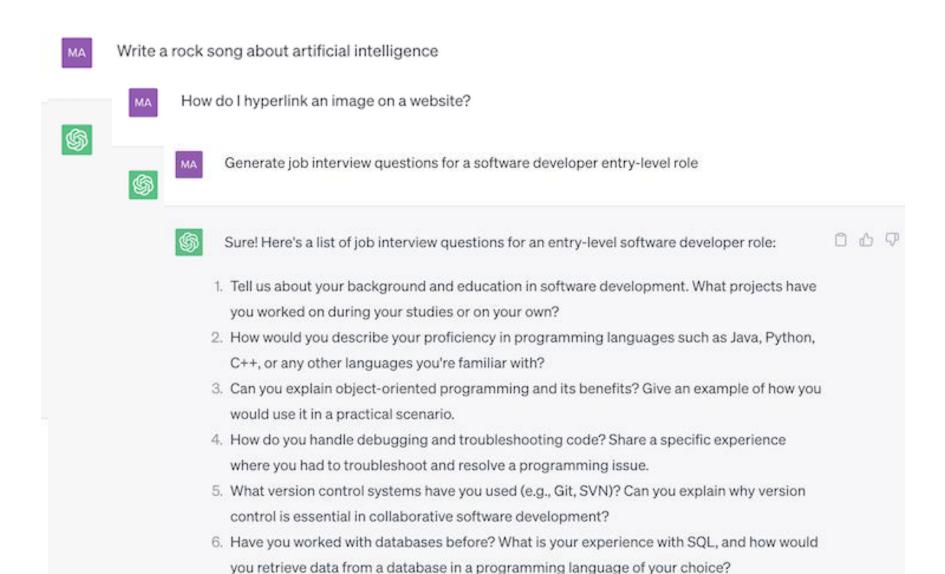


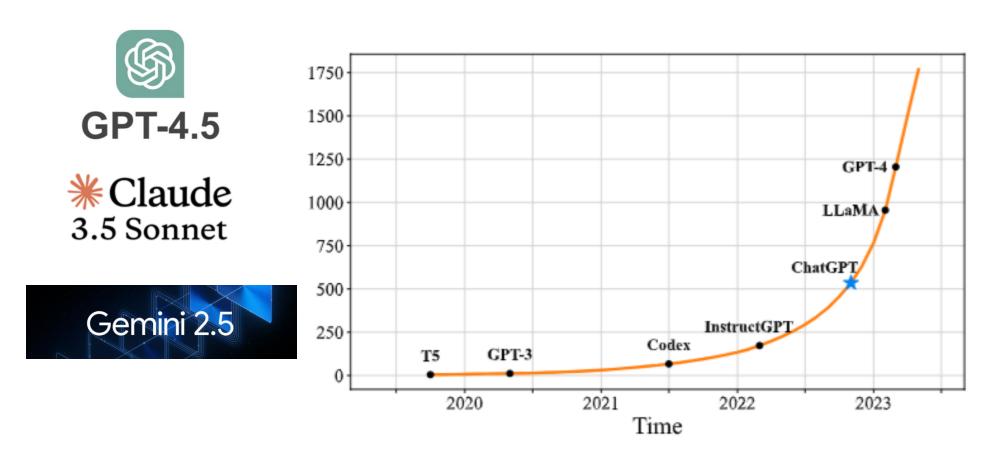
Write a 100-word product description for a 2020 Subaru Crosstrek

Introducing the 2020 Subaru Crosstrek – where adventure meets sophistication. Designed for the modern explorer, this versatile compact SUV boasts an impressive combination of style and capability. With its legendary symmetrical all-wheel-drive system, it conquers any terrain while providing a smooth and exhilarating ride. The Crosstrek's spacious interior offers comfort and flexibility, accommodating both passengers and cargo effortlessly. Equipped with cutting-edge technology, including Subaru's intuitive STARLINK infotainment system, it ensures a connected and entertaining journey. Safety is paramount, thanks to Subaru's EyeSight Driver Assist Technology. Unleash your wanderlust with the 2020 Subaru Crosstrek – your perfect companion for every escapade.

Write a rock song about artificial intelligence



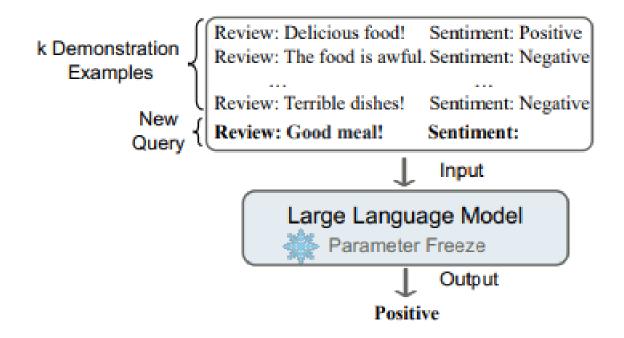




(b) Query="Large Language Model"

Cumulative numbers of arXiv papers contain keyphrase "large language model" Figures from: A Survey of Large Language Models, 2023.

In-Context Learning (ICL)

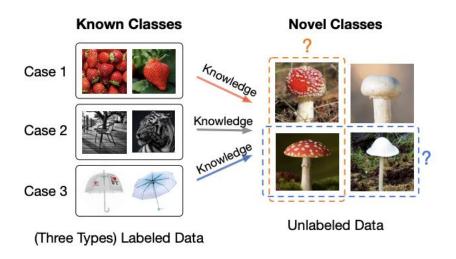


- Allow easy adaptation to various tasks
- Key property towards AGI

Why can adapt to general tasks? Knowledge reuse

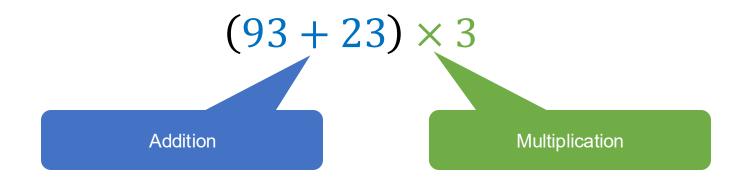
Why can adapt to general tasks? Knowledge reuse

- Many tasks are compositions of basic skills
 - Novel classification tasks involving several features each seen in different tasks



Why can adapt to general tasks? Knowledge reuse

- Many tasks are compositions of basic skills
 - Novel classification tasks involving several features each seen in different tasks
 - Math/reasoning involving multiple steps that may need different skills



Why can adapt to various tasks? Knowledge reuse

- Many tasks are compositions of basic skills
 - Novel classification tasks involving several patterns each seen in different tasks
 - Math/reasoning involving multiple steps that may need different skills
- Composition ability is crucial for general intelligence
 - Exponentially many compositions of basic skills; cannot handle individually
 - Allows efficient adaptation with few data

In-Context Composition

- Given the context consisting of
 - k_1 examples from simple task 1 (f_1)
 - k_2 examples from simple task 2 (f_2)
 - Possibly k_c examples from composite task composing task 1 and 2 ($f_2 \circ f_1$)

The model needs to address a query from the composite task

Can language models do composition in-context?

In-Context Composition Dataset

- Stylized linguistic and logic tasks
- Use special symbols for the tasks

In-Context Composition Dataset

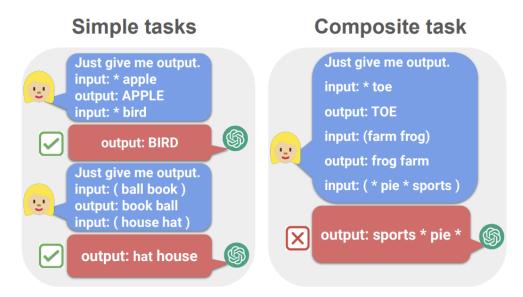
- Stylized linguistic and logic tasks
- Use special symbols for the tasks

Tasks	Task	Input	Output		
Words	(A) Capitalization	apple	APPLE		
	(B) Swap	bell ford	ford bell		
	(C) Two Sum twenty @ eleven		thirty-one		
	(D) Past Tense	pay	paid		
	(E) Opposite	Above	Below		
Numerical	(F) Plus One	435	436		
	(G) Modular	15 @ 6	3		
	(H) Two Sum Plus One	12 # 5	18		

Composite Task						
(A) + (B)						
(A) + (C)						
(A) + (F)						
(B) + (D)						
(B) + (E)						
(D) + (F)						
(G) + (H)						

Sanity Checks

- Models: Llama (7B, 13B, 30B, 65B), Llama2 (7B, 13B, and 70B), Mistral (7B and 8x7B)
- Simple task queries without examples: Close to 0 accuracy
- Simple task queries with examples: Easily solved
- Composite queries without composite examples: Low performance



Can in-context examples help composition?

Recall the setting:

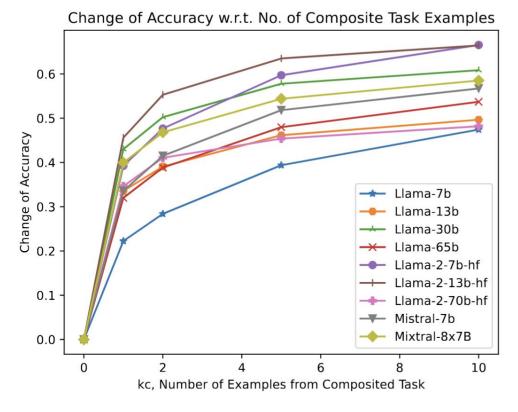
- Given the context consisting of
 - k_1 examples from simple task 1
 - k₂ examples from simple task 2
 - Possibly k_c examples from composite task composing task 1 and 2
- The model needs to address a query from the composite task

Method

Increase the example number, check the performance change

Can in-context examples help composition?

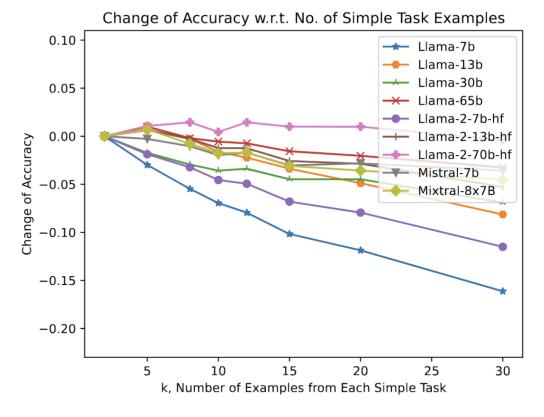
- Increase the example number, check the performance change
 - Finding: Composite task examples help the performance as expected



Increasing the number of composite task examples

Can in-context examples help composition?

- Increase the example number, check the performance change
 - Finding: Simple task examples hurt the performance unexpectedly



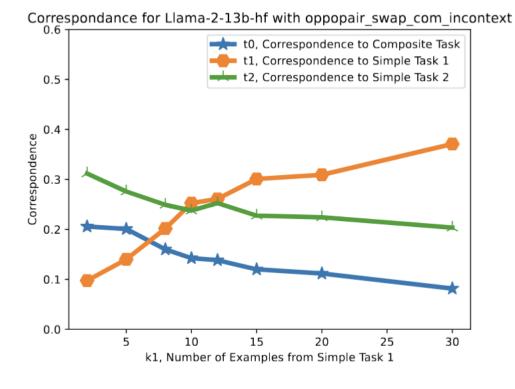
Increasing the number of simple task examples

What info from the examples is utilized?

Method: check how the output distribution relates to the examples

 Correspondence to a task: output only performing that task

 Finding: Models may match query to incontext examples from any task, ignoring the compositional structure

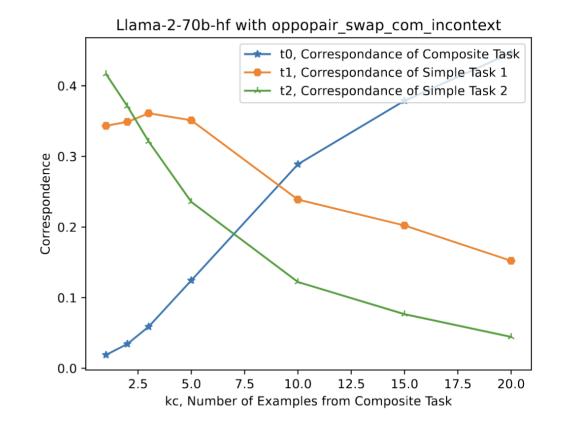


(b) Llama-2-13b model

What info from the examples is utilized and how?

- Method: check how the output distribution relates to the examples
 - Correspondence to a task: Output only performing that task

 Finding: Models may match query to incontext examples from any task, ignoring the compositional structure



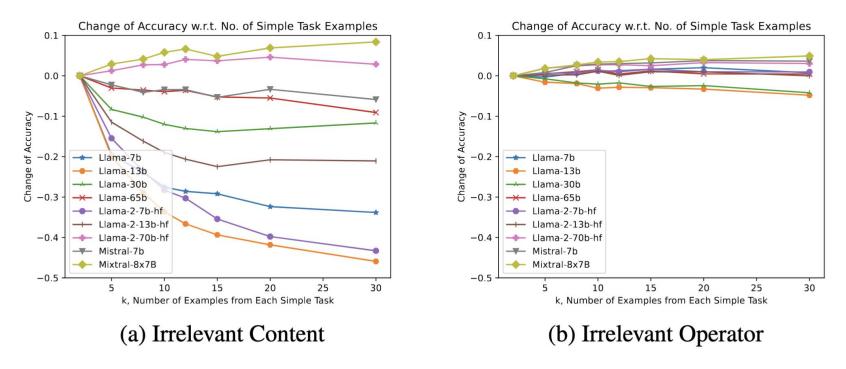
How are the examples are utilized?

Method: Ablate the two parts (operator and content) of the examples

	Original	Irrelevant Task	Irrelevant Content	Irrelevant Operator
Prompt	input: * Dry Lie output: Wet Stand input: Sad Less # output: Less Sad input: * Eager Proud # output: Humble Listless input: * Rich Humble #	input: (Accept Low) output: ACCEPT LOW input: (Rich Humble)	input: * Dry Lie output: Wet Stand input: Sad Less # output: Less Sad input: * Accept Low # output: ACCEPT LOW input: * Rich Humble #	input: * Dry Lie output: Wet Stand input: Sad Less # output: Less Sad input: (Eager Proud) output: Humble Listless input: (Rich Humble)
Answer	output: Proud Poor	output: RICH HUMBLE	output: RICH HUMBLE	output: Proud Poor

How are the examples are utilized?

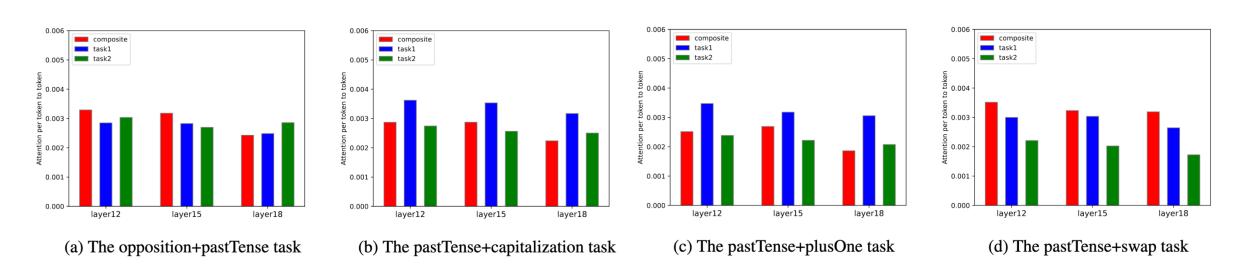
Method: Ablate the two parts (content and operator) of the examples



Finding: Largely base on the operators to utilize the examples

Where are the models paying attention to?

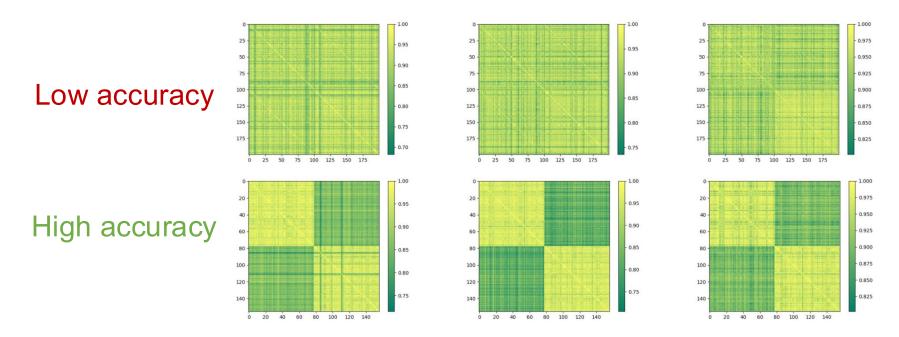
 Method: Pick a layer, compute the average attention from the query tokens to different groups (model: Mistral-7B)



Finding: Same order of attention is paid to examples of different tasks

Are attentions different on simple/composite queries?

 Method: fix context, generate 100 simple/composite queries; compute the similarities between their attentions (layer 12/15/18 of Mistral-7B)



Finding: Ignoring compositional structure leads to low accuracy

Can Chain-of-Thought examples help?

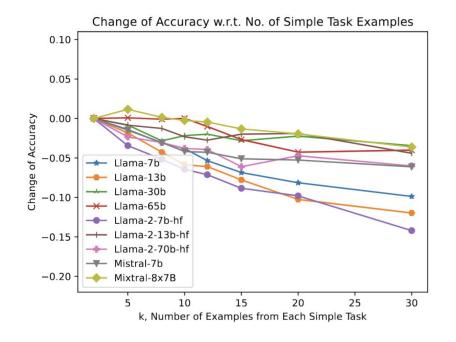
CoT: popular method for improving LLM's reasoning

CoT examples: Adding intermediate output

- Original composite task example: * Rich Humble # -> Proud Poor where * denotes opposition and denotes swap
- CoT version: * Rich Humble # -> Poor Proud # -> Proud Poor

Can Chain-of-Thought examples help?

- Method: replace all composite examples with CoT, and redo experiments
 - Finding 1: CoT examples do not help mitigate the negative impact of more simple examples
 - Finding 2: CoT examples do not help improve the performance consistently



	Llama-7B	Llama-13B	Llama-30B	Llama-65B	Llama2-7B	Llama2-13B	Llama2-70B	Mistral-7B	Mistral-8x7B
Vanilla	32.6	56.2	67.6	63.4	49.6	68.7	80.8	66.1	71.2
CoT	42.2	51.2	72.7	64.0	45.9	65.7	77.6	64.9	77.6

Can Chain-of-Thought examples help?

 Error pattern: cannot align the examples with the corresponding steps in the composition

Example:

- Query: * Grow Respect # (opposition+swap task)
- Correct: * Grow Respect # -> Shrink Disrespect # -> Disrespect Shrink
- Model: * Grow Respect # -> Shrink Disrespect # -> Respect Grow
- In the second step, the model incorrectly performs opposition+swap instead of only swap

Preliminary Theoretical Analysis

- Composite task f as function composition $f = f_T \circ \cdots \circ f_2 \circ f_1 \in H^T$ where $f_i \in H$ is simple task
- If only given k_c examples in form of (x, f(x)), by standard analysis:

Proposition 1. There exists a learning rule $\mathcal{M}: (\mathcal{X} \times \Sigma^*)^* \to \Sigma^{\mathcal{X}}$ such that for any distribution \mathcal{D} over \mathcal{X} and any $f \in \mathcal{H}^T$, for every $0 < \delta < 1$, we have with probability at least $1 - \delta$ over \mathcal{S}_0 ,

$$\Pr_{x \sim \mathcal{D}}[\mathcal{M}(\mathcal{S}_0)(x) \neq f(x)] \leq \frac{1}{k_c} \left(T \ln |\mathcal{H}| + \ln \left(\frac{1}{\delta} \right) \right).$$

Preliminary Theoretical Analysis

- If given k_c examples in form of $(z^1 = x, z^2, ..., z^T)$ where $z^{t+1} = f_t(z^t)$
- Also given k_t examples in form of $(x, f_t(x))$ knowing that they are from simple task t

Theorem 1. Suppose we are given k_t examples S_t from (\mathcal{D}_t, f_t) for $f_t \in \mathcal{H}(t \in [T])$ and k_c examples S_0 from (\mathcal{D}_0, f_0) with $f_0 = f_T \circ \ldots \circ f_2 \circ f_1$. Suppose \mathcal{H} is distinguishable: for some $\epsilon_0 > 0$, for any $f \neq g \in \mathcal{H}$ and $\mathcal{D}_t(0 \leq t \leq T)$, $\Pr_{x \sim \mathcal{D}_t}[f(x) \neq g(x)] > \epsilon_0$. There exists a learning rule $\mathcal{M}: ((\mathcal{X} \times \Sigma^*)^*)^{T+1} \to \Sigma^{\mathcal{X}}$ such that for every $0 < \delta < 1$, if

$$\max(k_c, k_t) \ge \frac{1}{\epsilon_0} \left(\ln |\mathcal{H}| + \ln \frac{T}{\delta} \right), \forall t \in [T],$$

then with probability at least $1 - \delta$ over $\{S_t\}_{t=0}^T$, we have $\mathcal{M}(S_0; S_1, \dots, S_T) = f_0$.

New Method: Expanded Chain-of-Thought

 ExpCoT: view the simple task examples as composite task examples with missing steps and expand them into the CoT format

Examples:

- Composite task CoT example * Rich Humble # -> Poor Proud # -> Proud Poor converted to Step1: * Rich Humble #, Step2: Poor Proud #, Step3: Proud Poor
- Simple task 1 example Dry Lie -> Wet Stand converted to Step1: * Dry Lie, Step2: Wet Stand, Step3: ???
- Simple task 2 example Sad Less # -> Less Sad is converted to Step1: ???, Step2: Sad Less #, Step3: Less Sad

New Method: Expanded Chain-of-Thought

ExpCoT improves the performance significantly most of the time

	Llama-7B	Llama-13B	Llama-30B	Llama-65B	Llama2-7B	Llama2-13B	Llama2-70B	Mistral-7B	Mistral-8x7B
Vanilla CoT	32.6 42.2	56.2 51.2	67.6 72.7	63.4 64.0	49.6 45.9	68.7 65.7	80.8 77.6	66.1 64.9	71.2 77.6
ExpCoT	47.5	58.1	77.4	75.7	47.9	70.4	87.2	74.3	87. 5

Table 3: The accuracy (%) averaged over tasks ($k = 30, k_c = 2$). Best results are **boldfaced**.

New Method: Expanded Chain-of-Thought

ExpCoT mitigates the negative impact of more simple task examples

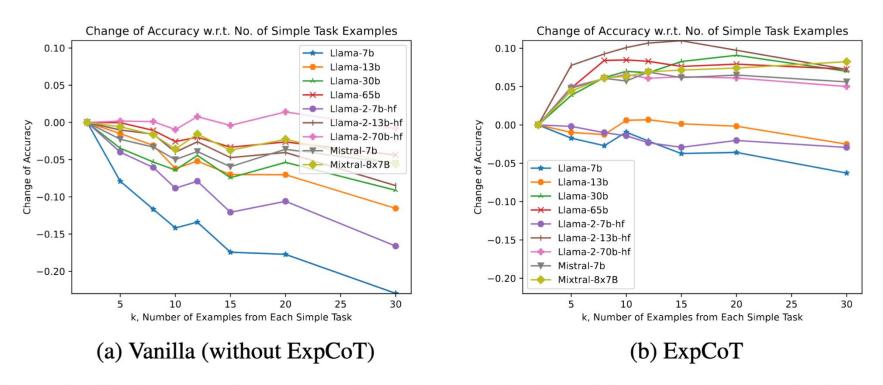


Figure 8: The impact of more simple task examples for without or with ExpCoT ($k_c = 2$).

Take Home Messages

- Language models may have limited in-context composition ability
 - Due to failure to recognize composition and align skills with corresponding steps
- A new method aligning example steps helps in-context composition

Further thoughts:

- More recent models like Qwen3, Llama4 etc.
- Other composition tasks
- How to do step alignment for practical data?

