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The Role of Discount Factor

Optimization: Finite value;

Finance: Prevailing interest rate – Compute the present value of future cash flows values;

Behavioral Economics: Time preference/Impulsivity: Favoring present vs. future;
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A Lottery Choice Example

Use power utility model u(x) = xα where α = 0.9.

Plan A and B1 have expected utility 33.81 and 45.44, respectively.

An annual discount factor γ ∈ (0, 1) is introduced. The “discounted” utility is
u(γx) = (γx)α. If γ ∈ [0.72, 1), A ⪯ B2; otherwise, A ⪰ B2.
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Basic Models

Given two potential expenses z0 and Z1, with z0 an immediate deterministic amount while
Z1 is a random one received at time T , the risk-averse exponentially discounted
preference is:

(D-model) R(z0,Z1,T ) := ρ(z0 + γTZ1),

where ρ is a risk measure (RM).

The representation reduces to the well known expected total discounted cost when
ρ(X ) := E[X ]:

(E-model) R(z0,Z1,T ) := E[z0 + γTZ1] = z0 + γTE[Z1]

= E[z0 + 1{τ ≥ T}Z1],

where τ is a random interruption time which follows an exponential distribution with
mean −1/ ln(γ).

[Shwartz 2001, Ermoliev 2010]
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Basic Models (Con)
The random interruption equivalence does not carry through for more general forms of
RMs. For instance,

E[u(z0 + {τ ≥ T}Z1)] = (1− γT )u(z0) + γT [u(z0 + Z1)]

̸= [u(z0 + γTZ1)].

unless u(·) is linear.

The proposed random interruption model (“RI-model”):

(RI-model) R(z0,Z1,T ) := ρ(z0 + 1{τ ≥ T}Z1),

and more generally a mixture model (“M-model”),

(M-model) R(z0,Z1,T ) := ρ(z0 + 1{τ ≥ T}γTd Z1),

where τ follows an exponential distribution with mean −1/ ln(γr ).
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Empirical Study Supporting the M-model

Existing field experiment results [Lopez-Guzman 2018] (Acknowledgment: Grateful for the authors

providing field experiment data for this research !);

Subjects were asked to undertake two sessions: Risk Attitude (RA) task and
Inter-Temporal Choice (ITC) task;

Logistic regression;

1 The monthly discounting ranged from 2.9% to 99.5% of the reward, with a median of 60%.
From a purely financial point of view, note that a monthly discounting of 2.9% is already
equivalent to assuming a yearly interest rate of nearly 42%. In comparison, the average credit
card rate in the US over the period of 2014-2018 was below 17%.

Discounting = 1− 1

(1 + Interest rate)Period

2 RI-model achieves a higher goodness-of-fit performance than the D-model, but whether the
D-model can indeed safely be rejected, is left for investigation.
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Empirical Study Supporting the M-model (Con)

New features in our analyses:

1 Use Entropic risk measure: ρ(X ) := (1/β) ln(E[exp(βX )]), with β > 0 as the risk aversion
parameter; 32 participants are shown to be risk-averse by RA task.

2 Credit card assumption: Subjects have access to credit with a daily interest rate less than
(1/L− 1) for some L > 0 and cannot create value directly from this credit instrument.

⇒ We necessarily have that γd ≥ L (constrained case).

3 Conduct likelihood ratio tests for D-model and M-model, under both constrained and
unconstrained cases;

Unconstrained case: Estimated discount factor γd is consistent with the findings in
[Lopez-Guzman 2018]. For 10 out of the 32 participants, the D-model can safely be
rejected in favor of the M-model.
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Empirical Study Supporting the M-model (Con)
Constrained case: 26 subjects (81% of the population) eventually reject D-model as L
approaches 1.
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Risk Preference Mappings

Let (Ω, F , P) be a probability space and F := (Ft)t∈N be a filtration, with F0 = {∅,Ω}
and Ft ⊂ Ft+1 for all t ∈ N. Consider for all t ∈ N, a set of random liability
Zt ⊆ Lp(Ω,Ft ,P) for some p ∈ [1,∞]. Consider cash flows ZN := (Zt)t∈N with Zt ∈ Zt

for all t ≥ 0, adapted to filtration F. Define a preference mapping R : ZN → R that is
both monotone, convex, and recursive.

(D-model) RD(ZN) := lim sup
T→∞

ρ(
T∑
t=0

γtZt).

(M-model) RM(ZN) := lim sup
T→∞

ρ(

min{τ ,T}∑
t=0

γtdZt),

where P[τ = t] = (1− γr )γ
t
r and P[τ ≥ t] = γtr , and 1{τ ≥ t} is adapted to the

filtration F.
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Risk Preference Mappings (Con)

Definition 1 (Recursive preference mapping)

The preference mapping R(·) is recursive if there exists a preference system {R̄t}t∈N, with
each R̄t : Zt ×Zt+1 → Zt such that, for all ZN ∈ ZN:

R(ZN) = lim sup
T→∞

R̄0(Z0, R̄1(Z1, . . . , R̄T−1(ZT−1,ZT ) . . . )).

Definition 2 (Recursive risk measure)

The risk measure ρ : Lp(Ω,F ,P) → R is a “recursive risk measure” if there exists a set of risk
measures {ρt}∞t=0 such that

ρ(X ) = lim sup
T→∞

ρ0(ρ1 · · · ρT−2(ρT−1(E[X |FT ])) · · · ),

where each ρt : Lp(Ω,Ft+1,P) → Lp(Ω,Ft ,P) is a conditional risk mapping [Ruszczynski
2006].
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Risk Preference Mappings (Con)

Theorem 3 (Recursive Formulation of D-model)

D-model satisfies R̄t(Zt ,Zt+1) := Zt + γ−tρt(γ
t+1Zt+1), which reduces to

R̄t(Zt ,Zt+1) := Zt + γρt(Zt+1), when the conditional risk mappings are coherent. In the
latter case, we have that:

RD(ZN) = lim sup
T→∞

Z0 + γρ0(Z1 + γρ1(Z2 + · · ·+ γρT−1(ZT ) · · · )). (1)
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Risk Preference Mappings (Con)

Theorem 4 (Recursive Formulation of M-model)

M-model satisfies R̄t(Zt ,Zt+1) := Zt + γ−t
d ρt(0⊕γr γ

t+1
d Zt+1), which reduces to

R̄t(Zt ,Zt+1) := Zt + γdρt(0⊕γr Zt+1), when the conditional risk mappings are coherent. In
the latter case, we have:

RM(ZN)

= lim sup
T→∞

Z0 + γdρ0(0⊕γr (Z1 + γdρ1(0⊕γr (Z2 + · · ·+ γdρT−1(0⊕γr ZT ) · · · )))). (2)
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An Optimal Stopping Problem Example

Consider a stochastic process AN := (At)t∈N of periodical cost (negative of payment)
opportunities with each At ∈ A ⊂ ℜ−. DM must identify when to accept the payment
using a controlled stop time (CST) process s such that 1{s ≥ t} is adapted to the natural
filtration of the AN process.

Given a CST strategy s, the cost flow produced takes the form: Zt(s) := As1{t = s} for
all t ∈ N. Letting S denote the set of all eligible CST strategies, we have the problem:

min
s∈S

R(ZN(s)).

Assume that A is bounded (i.e. A ⊆ [−Ā, Ā]) and each At are i.i.d.
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An Optimal Stopping Problem Example (Con)

Proposition 1

When γd < 1 in general and when γr < 1 if the conditional risk mappings are either
comonotone additive or the entropic risk measure and 2) A ⊂ (−∞, 0], the infinite-horizon
problem can be approximated to any level of precision using a finite-horizon one.

Dynamic programming formulation for T horizon problem:

V ∗
t (At) = min

{
At , γ

−t
d ρt(0⊕γr γ

t+1
d V ∗

t+1(At+1))
}
,

with V ∗
T (AT ) = min{0, AT}. An optimal policy is

s∗T = inf{t : V ∗
t (At) = At} = inf{t : At ≤ Rt}.

Equivalently, we could solve Rt = γ−t
d ρ(0⊕γr γ

t+1
d min{Rt+1, a}), with RT = 0, where a

follows certain distribution on [−Ā, 0].
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An Optimal Stopping Problem Example (Con)

We observe that,

Rt =γ−t
d ρ(0⊕γr γ

t+1
d min{Rt+1, a})

=
1

βγtd
log(E exp(0⊕γr (βγ

t
d)γd min{Rt+1, a})),

when t → ∞ and γd < 1, the risk parameter in the conditional entropic risk measure
βγtd → 0 is dissolved, such that we are approaching for solving the risk-neutral equation.

Under a ∼ U[−Ā, 0], Setting the truncation

RT = Ā(γdγr )
−1(

√
1− (γdγr )2 − 1),

instead of RT = 0, yields a better approximation [Hau 2022].
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The Properties of D- and M-model

Finiteness

Proposition 2

Given that Zt ∈ [−B, B] for all t ≥ 0, B ≥ 0, and ρ is a normalized nested risk measure with
law-invariant conditional risk mappings, then the M-model is finite if either of the following
hold:

(i) γd < 1,

(ii) γr < 1 and Zt ≤ 0 for all t ≥ 0,

(iii) when γr < 1 and the nested risk measure is composed of utility-based shortfall conditional
risk mappings [Follmer 2002] with loss functions with subdifferentials bounded in a strictly
positive interval,

(iv) when γr < 1 and the nested risk measure is composed of optimized certainty equivalent
[Ben-Tal 1986] conditional risk mappings that employ a surjective and stationary loss function.
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The Properties of D- and M-model (Con)

Interchangeability

Proposition 3

Given that Zt ∈ [−B, 0] for all t ≥ 0, and ρ is a normalized recursive risk measure with
subjective conditional measures, then RI- and M- model can be reformulated as D-model with
adjusted lower risk measure and lower discount factor.

* Counter-example: Entropic risk measure

Wenjie Huang (HKU) Mixed Discounting May 29, 2025 17 / 25



The Properties of D- and M-model (Con)

Ordering

Proposition 4

Under a recursive risk measure composed of law-invariant conditional measures, and if γd < 1 and
bounded Xt ≥ 0 for all t ≥ 0, M-model will lower bound D-model with γ = γd .

Definition 1
The conditional mapping ρt is “mixture concave” if
∀ γ ∈ [0, 1], ∀X ,Y ∈ Lp(Ω,Ft+1,P), ρt(X ⊕γ Y ) ≥ (1− γ)ρt(X ) + γρt(Y ) a.s.

Proposition 5

Under a recursive risk measure composed of law-invariant and “mixture concave” conditional measures
(not necessarily coherent), M-model will upper bound D-model with γ = γdγr and

ρ̄t(X ) := γt+1
r ρt(γ

−(t+1)
r X ) as the conditional risk mapping. The latter reduce to ρ̄t(X ) := ρt(X ) in

the case that ρ is coherent.
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The Properties of D- and M-model (Con)

Examples of “mixture concave” convex risk measure:
1 [Delage 2019] Spectral risk measure, Mean variance, Mean standard deviation, Mean (semi-)

deviation from target and Mean weighted mean deviation from quantile.
2 Optimized certainty equivalent:

ρ(X ⊕γ Y )

= inf
t∈R

{t + E[ℓ(X ⊕γ Y − t)]}

= inf
t∈R

{t + (1− γ)E[ℓ(X − t)] + γE[ℓ(Y − t)]}

≥(1− γ) inf
t∈R

{t + E[ℓ(X − t)]}+ γ inf
t∈R

{t + E[ℓ(Y − t)]}

=(1− γ)ρ(X ) + γρ(Y ).

3 [Postek 2016] Other minimum of affine function with expected loss

*Counter-example: Utility-based shortfall with piecewise loss function
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Numerical Experiments
Ā = 10; T = ⌈1/(1− γd)⌉ for D-model and T = ⌈1/(1− γdγr )⌉ for M-model;

Figure: Distribution of D-model and M-model cut-off values pair
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Numerical Experiments (Con)

Figure: Cutoffs for D- and M-model as a function of L (Each curve represents a participant of the study)
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Numerical Experiments (Con)

Figure: Distribution of D(LB)-model and M-model cut-off values pair
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Numerical Experiments (Con)

(a) Unconstrained participant (b) Constrained participant

Figure: Conditional first-stage risk of running the D-model, D(LB)-model, and M-model policy when
true model is an M-model
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Numerical Experiments (Con)

Figure: Average V̂0 for rejected subjects of running D-model, D(LB)-model and M-model policy when
the true model is an M-model

Wenjie Huang (HKU) Mixed Discounting May 29, 2025 24 / 25



Conclusion

1 Present evidences through field experiment data that decision makers are better
represented by a propsoed M-model under certain assumptions;

2 Extend the “risk preference mapping” framework [Pichler 2022] to an infinite horizon
setting and show how it can be reduced to M-model;

3 Numerical experiments on a simple optimal stopping problem, validate the effects of the
proposed model;

4 Address the relationships between D-, and M-model (RI-model);
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