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Motivation

Motivation

Recurrent models have been a milestone in sequence modeling tasks:

language modeling (Mikolov et al., 2010),

machine translation (Sutskever et al., 2014),

action and speech recognition (Chan et al., 2016),

time series forecasting (Flunkert et al., 2017),

dynamical system reconstruction (Hess et al., 2023).

Vanilla recurrent neural network (RNN) forms the basis for many important
variants:

long-short term memory (LSTM) network (Hochreiter and Schmidhuber,
1997),

gated recurrent units (GRU) (Cho et al., 2014),

many others (Chang et al., 2019; Qiao et al., 2019; Gu et al., 2020; Erichson
et al., 2021; Qin et al., 2023).
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Motivation

Motivation

RNNs have some disadvantages over Transformers (Vaswani et al., 2017):

RNN cannot be trained in a parallel way.

...

RNNs have some advantages over Transformers:

Data modeling: incorporating recurrent dynamics enables more
sample-efficient extraction of sequential information (Shaw et al., 2018)

Algorithmic: RNNs enjoys linear scaling in time and memory costs with
respect to sequence length, in contrast to the quadratic complexity of
attention mechanism in transformers.

Therefore, RNN’s recurrent structures have been leveraged to address limitations
of Transformer architectures, expanding the landscape of recurrent models.
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Motivation

Motivation

Current literature to theoretically explain RNNs:

expressive power (Khrulkov et al., 2018),

memory capacity (Collins et al., 2017; Haviv et al., 2019),

generalization ability (Tu et al., 2020),

training dynamics (Alemohammad et al., 2021; Farrell et al., 2022;
Cohen-Karlik et al., 2023).

Yet, a fundamental question remains unaddressed: What elementary temporal
patterns can these models capture at a granular level?
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Motivation

Motivation

Our contribution:

Provide a quantification for recurrent dynamics by block diagonalizing
recurrent matrices and introducing a new concept of recurrence features;

Utilizing the prevalence of low-order features, we propose a parallelized
network compring small-sized units, each having as few as two hidden states;

We show both theoretically and numerically that the parallelized network
accelerates computation dramatically while achieving comparable performace.
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Recurrent Dynamics and Its Quantification

Recurrent Dynamics and Its Quantification

Recurrent Matrix Shaping Recurrent Dynamics

Consider a general RNN layer with inputs xt ∈ Rdin and hidden states
ht ∈ Rd where 1 ≤ t ≤ T . It has the form of

ht = σh(W hht−1 +W xxt + b), (1)

where σh(·) is an element-wise activation function, W h ∈ Rd×d and
W x ∈ Rd×din are weight matrices, and b is the bias term.

Crucially, matrix W h determines temporal recurrent dynamics because it
controls how subsequent hidden states are shaped by previous ones. In light
of its important role, we refer to it as the recurrent matrix.

Under the special case σh(x) = x and b = 0 which results in a linear RNN
without bias, the output at (1) can be clearly rewritten into an explicit form:

ht =
∑t−1

j=0 W
j
hW xxt−j .
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Recurrent Dynamics and Its Quantification

Recurrent Dynamics and Its Quantification

Decouple Recurrent Dynamics of RNN: A Special Scenario

When recurrent matrix is block diagonal, i.e., W h = ⊕K
k=1W

(k)
h ∈ Rd×d, with ⊕

denoting the matrix direct sum, W
(k)
h ∈ Rdk×dk and d =

∑K
k=1 dk, the RNN at

(1) can be decomposed into a series of smaller RNNs {h(k)
t }Kk=1 with

h
(k)
t = σh(W

(k)
h h

(k)
t−1 +W (k)

x xt + b(k)) ∈ Rdk and ht = Concat[h
(1)
t , ...,h

(K)
t ],

where Concat[·] denotes the concatenation, and W (k)
x and b(k) are obtained by

partitioning W x and b along the rows, i.e., W (k)
x = (W x)ak−1+1:ak

,

b(k) = bak−1+1:ak
, a0 = 0, and ak =

∑k
i=1 dk for k > 0.

⋆ Block diagonality of the recurrent matrix offers a way to separate the recurrent
dynamics.
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Recurrent Dynamics and Its Quantification

Decouple Recurrent Dynamics of RNN: General Cases

Proposition 1 (Real Jordan Decomposition (Horn and Johnson, 2012)).

Suppose a matrix W h ∈ Rd×d has r distinct nonzero real eigenvalues {λj}rj=1

and s distinct conjugate pairs of nonzero complex eigenvalues
{(λr+2k−1, λr+2k) = (γke

iθk , γke
−iθk)}sk=1 with λj ∈ R, γk > 0 and

θk ∈ (−π/2, π/2). Assume the geometric multiplicities of all nonzero eigenvalues
to be one, then it has a real Jordan canonical form W h = BJB−1 where
B ∈ Rd×d is an invertible matrix and J is a real block diagonal matrix formed by
a direct sum of real Jordan blocks

J = Jn1(λ1)⊕ · · · ⊕ Jnr (λr)⊕Cnr+1(γ1, θ1)⊕ · · · ⊕Cnr+s(γs, θs)⊕ 0d−r−2s.

The subscript nk ≥ 1 is the corresponding algebraic multiplicity of λk or
(γk−re

iθk−r , γk−re
−iθk−r ) and 0d−r−2s ∈ R(d−r−2s)×(d−r−2s) is a zero matrix.
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Recurrent Dynamics and Its Quantification

Decouple Recurrent Dynamics of RNN: General Cases

The two types of real Jordan blocks have the forms of:

Jn(λ) =


λ 1

. . .
. . .

λ 1
λ

 ∈ Rn×n

and Cn(γ, θ) =


C(γ, θ) I2

. . .
. . .
. . . I2

C(γ, θ)

 ∈ R2n×2n,

where C(γ, θ) = γ

(
cos θ sin θ
− sin θ cos θ

)
∈ R2×2 and I2 ∈ R2×2 is identity matrix.

Guodong Li HKU May 29, 2025 12 / 39



Recurrent Dynamics and Its Quantification

Recurrent Dynamics and Its Quantification

Decouple Recurrent Dynamics of RNN: General Cases

Putting this decomposition back into (1), we obtain

ht = σh[B(JB−1ht−1 +B−1W xxt +B−1b)]

≈ Bσh(JB
−1ht−1 +B−1W xxt +B−1b),

where the approximation of moving B outside the activation function
becomes equivalence if σh(x) = x.

As a result, it leads to an interpretable RNN surrogate:

h̃t = σh(Jh̃t−1 + W̃ xxt + b̃) and ht = Bh̃t,

where W̃ x = B−1W x and b̃ = B−1b. Note that its recurrent matrix has
the desirable block diagonal form, allowing for a decomposition similar to the
special case.
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Recurrence Features

The RNN surrogate has two types of constituent RNNs,

ht = σh

(
Jn(λ)ht−1 +W xxt + b

)
∈ Rn

and ht = σh

(
Cn(γ, θ)ht−1 +W xxt + b

)
∈ R2n.

The recurrent matrices Jn(λ) and Cn(γ, θ) cannot be further decomposed
by real Jordan decomposition.

Recognizing the two RNNs are the fundamental units to constitute the
recurrent dynamics of a general RNN, we formally define their dynamics as
the recurrence feature.

The corresponding dynamics are categorized as Types R-n and C-n features,
respectively.
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Recurrent Dynamics and Its Quantification

Recurrence Features

Intriguingly, these two types of features align with two well-established temporal
patterns of ARMA models in time series literature (Cryer and Chan, 2008).

Figure: Two patterns of recurrence features that the vanilla RNN learns from real data:
exponential decay (Type R) and damped wave decay (Type C).
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Recurrent Dynamics and Its Quantification

Some Dominating Features

Empirical evidence show that recurrent models after gradient updates tend to
learn low-order (R-1 and C-1) features, and a majority of them are complex types.

Figure: Evolution of recurrence feature types across training for vanilla RNN, LSTM, and
GRU models from the permuted sequential MNIST task. Types other than R-1, C-1,
R-4, or C-2 have zero occurrence.
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Recurrent Dynamics and Its Quantification

Some Dominating Features

Theorem 1.

Let Md(R) be the set of all d× d real matrices with rank at most R, where
1 < R ≤ d. Define M1

d(R) and M2
d(R) as the sets of matrices in Md(R) whose

nonzero real Jordan blocks are only of the form J1(λ) or exclusively of the forms
J1(λ), C1(γ, θ), or J2(λ). Then M2

d(R) is dense in Md(R), while M1
d(R) is not

dense in Md(R).

Give a partial account of why RNNs usually concentrate on low-order features
from the perspective of approximation capability.

Underscore the limitations of a diagonal recurrent matrix belonging to
M1

d(R), a design considered by Li et al. (2018); Martin and Cundy (2018);
Rusch and Mishra (2021)
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Recurrent Dynamics and Its Quantification

Some Dominating Features

From a probabilistic view:

Theorem 2.

Consider a general RNN with recurrent matrix W h = (ξij)1≤i,j≤d ∈ Rd×d, and
the entries {ξij} have a continuous joint distribution. Then with probability one,
the RNN contains recurrence features with Types R-1, R-2 and C-1 only.
Moreover, if {ξij} are independent standard normal random variables, then with
probability at most 1/2d(d−1)/4, the RNN contains recurrence features with Type
R-1 only.

These simplify our understanding of recurrent dynamics and will be leveraged to
guide a novel network design.
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Parallelized Recurrent Neural Network

Parallelized Recurrent Neural Network

A New Network

We propose to approximate the RNN at (1) by parallelizing K small RNNs of
equal hidden size ds to maximize the computational efficiency:

h
(k)
t = Recurrent-cell(h

(k)
t−1,xt) ∈ Rds and ht = FC(Concat[h

(1)
t , ...,h

(K)
t ]).

Here ds is hyperparameter, and d = Kds is divisible by ds without loss of

generality. Especially, its recurrent matrix W
(k)
h ∈ Rds×ds is freely learnable

rather than being parametrized by a specific form of real Jordan block.
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Parallelized Recurrent Neural Network

Parallelized Recurrent Neural Network

A New Network

We recommend setting ds = 2 first because it covers the most probable recurrence
feature types of a vanilla RNN while maintaining high computational efficiency.

(a) (b)

Figure: (a) A ParaRNN layer at time t. (b) Number of recurrence feature types
(d = 128): its cumulative distribution from Theorem 2 (in blue) and the trade-off with
parallelization efficiency (in orange).
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Parallelized Recurrent Neural Network

ParaRNN Function Class

Input: Sequence Xt = (x1, . . . ,xt) ∈ Rdin×t with 1 ≤ t ≤ T .

Network N consists of:

(i) Linear input layer P : Rdin×t → Rd×t, with P(Xt) = (Px1, . . . ,Pxt),
P ∈ Rd×din ;

(ii) L recurrent layers R1, . . . ,RL : Rd×t → Rd×t (ReLU, block size ds);

(iii) Position-wise FC layer F : Rd×t → Rd×t with ReLU;

(iv) Linear output layer Q : Rd×t → Rdout×t defined analogously to P.

ParaRNN Function Class:

F (t)
din,dout,d,ds,L,U =

{
N (Xt)[t] : Rdin×t → Rdout ,

N (Xt) = Q ◦ F ◦ RL ◦ · · · ◦ R1 ◦ P(Xt) ∈ Rdout×t,

with sup
Xt,t0∈{1,...,t}

∥N (Xt)[t0]∥∞ ≤ U
}
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Parallelized Recurrent Neural Network

Definition 1 (Hölder class).

Let Ω ⊂ Rdin and β > 0 with β = k+ ω, where k ∈ N0 and ω ∈ (0, 1]. A function
is said to be β-smooth if all its partial derivatives up to order k exist and are
bounded, and the partial derivatives of order k are ω-Hölder continuous. For
din, dout ∈ N, the Hölder class with smoothness index β is defined as

Hβ
din,dout

(Ω,M) =
{
f = (f1, . . . , fdout)

⊤ : Ω 7→ Rdout ,∑
n:∥n∥1<β

∥∂nfi∥L∞(Ω) +
∑

n:∥n∥1=k

sup
x,y∈Ω,x ̸=y

|∂nfi(x)− ∂nfi(y)|
∥x− y∥ω

≤ M,

i = 1, . . . , dout

}
,

where ∂n = ∂n1 . . . ∂ndin with n = (n1, . . . , ndin
) ∈ Ndin

0 and ∥n∥1 =
∑din

i=1 ni.
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Parallelized Recurrent Neural Network

Proposition 2 (Approximation Error Bound).

Let t0 ∈ {1, . . . , T}. Assume that f (t0) ∈ Hβ
din×t0,dout

([0, 1]din×t0 , U). Then for

any I, J ∈ N+, there exists a ParaRNN-based function ϕ ∈ F (t0)
din,dout,d,ds,L,U such

that

sup
X∈[0,1]din×t0

∥ϕ(X)−f (t0)(X)∥∞

≤ 19U(⌊β⌋+ 1)2(dint0)
⌊β⌋+(β∨1)/2(JI)−2β/(dint0),

Network Depth: L = 42(⌊β⌋+ 1)2I⌈log2(8I)⌉+ 6dinT ,

Network Width: d = 76(⌊β⌋+ 1)23dinT d
⌊β⌋+2
in doutT

⌊β⌋+1J⌈log2(8J)⌉+ ds.

(Assume d divisible by ds without loss of generality.)
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Parallelized Recurrent Neural Network

ParaRNN for Nonparametric Regression

Problem Setup:

Sequential data: (xt, zt)
T
t=1, where xt ∈ [0, 1]din , zt ∈ R

Goal: estimate f
(t)
0 with f

(t)
0 (Xt) = E[zt | x1, . . . ,xt]

Risk Definitions: (for any ϕ : Rdin×t → R)
Population risk: R(ϕ) = E[(ϕ(Xt)− zt)

2]

Empirical risk: RN (ϕ) = 1
N

∑N
i=1[ϕ(Xi,t)− zi,t]

2

Estimators:

Empirical risk minimizer (ERM): f̂ (t) = argminϕ∈F(t) RN (ϕ)

Population risk minimizer: f̄ (t) = argminϕ∈F(t) R(ϕ)

Excess Risk Decomposition:

R(f̂ (t))−R(f
(t)
0 ) = R(f̂ (t))−R(f̄ (t))︸ ︷︷ ︸

Estimation error

+R(f̄ (t))−R(f
(t)
0 )︸ ︷︷ ︸

Approximation error
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Parallelized Recurrent Neural Network

Prediction Error Bound

Corollary 1.

Let t0 ∈ {1, . . . , T}. Suppose that f
(t0)
0 ∈ Hβ

din×t0,1
([0, 1]din×t0 , U) for some

U ≥ 1, and the function class F (t0)
din,1,d,ds,L,U has

width d ≍ Nη logN , and

depth L ≍ N
dint0

2dint0+4β−η
logN

for fixed η ∈ [0, dint0/(2dint0 + 4β)]. If N ≳ d2L2 logmax{d, L}, then the ERM

f̂ (t0) satisfies

ES

[
R(f̂ (t0))−R(f

(t0)
0 )

]
≲ N

− 2β
dint0+2β (logN)10.

Note: the ERM f̂ (t0) based on deep and wide ParaRNNs achieves the optimal
minimax rate N−2β/(dint0+2β) established by Stone (1982) for nonparametric
regression, up to a logarithmic factor.
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Parallelized Recurrent Neural Network

Extension to LSTM Networks

Our theoretical framework extends naturally to gated recurrent architectures like
LSTM, by identifying the recurrent matrices operating on previous hidden states.

LSTM cell computations:f t

it
ot

 = Sigmoid

W f

W i

W o

ht−1 +

Uf

U i

Uo

xt +

bfbi
bo


c̃t = tanh(W cht−1 +U cxt + bc)

Insight: The recurrent dynamics are jointly determined by four weight matrices,
W f , W i, W o and W c, as they shape how the previous hidden state ht−1 is
incorporated. Thus these matrices can be regarded as recurrent matrices as well.
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Parallelized Recurrent Neural Network

Extension to Attention-Based Recurrent Cells

The attention-based recurrent cell serves as another example where the weights
on the old memory play a comparable role as W h in vanilla RNNs.

The recurrent cell first generates the query Qt ∈ Rd×1 from ht−1. It also extracts
from both ht−1 and Xt to get the key Kt =

[
Kt,h Kt,x

]
∈ Rd×(1+N) and

similarly for the value V t =
[
V t,h V t,x

]
∈ Rd×(1+N), where Qt

Kt,h

V t,h

 =

WQ

WK

W V

ht−1, and

[
Kt,x

V t,x

]
=

[
WK

W V

]
Xt.

Memory state update:

h⊤
t = softmax

(
Q⊤

t Kt√
d

)
V ⊤

t

Insight: Recurrent dynamics are shaped by WQ,WK ,W V , as they control how
ht−1 influences the memory update. Hence we also consider them as the
recurrent matrices.
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Experiments

Simulation: Verifying the Trade-off in ParaRNN

Setup: We generate N = 50, 000 samples by a vanilla RNN of size d = 128, with
i-th sample represented as

(
xi,1:T , zi

)
and following the form:

zi = W yhi,T + by + ϵi ∈ R10

hi,t = Tanh(W hhi,t−1 +W xxi,t + bh) ∈ R128

ϵi
i.i.d.∼ N (0, I), each entry of W ’s and b’s

i.i.d.∼ N (0, 1)

for 1 ≤ t ≤ T, 1 ≤ i ≤ N . In particular, the inputs xi,1:T of length T = 128 are
generated from the ARMA(1, 1) process with the AR and MA coefficients being
0.7 and 0.3, respectively.

Experiment:

Train a ParaRNN with a fully connected output layer.

Vary block size ds ∈ {1, 2, 4, . . . , 128}.
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Experiments

Simulation Results

ParaRNN with ds = 2 effectively balances performance and speed, recovering
recurrent dynamics of the vanilla model.

Figure: Test MSE averaged over 25 replicates of the simulated data (in blue), and
average execution time over 100 replications of forward and backward propagation as
well as their sum for a ParaRNN layer on a single V100 GPU
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Experiments

Real-World Datasets

1. Time Series Forecasting (Zhou et al., 2021)

ETT (ETTh1, ETTh2, ETTm1): 7 power-related features, 2 years of data.

WTH: 12 weather features from 1,600 U.S. locations (2010–2013).

Goal: Predict “oil temperature” for ETT, “Wet Bulb” temperature for WTH.

2. Sequential Image Classification

Permuted MNIST (Lecun et al., 1998): Digit images flattened (T = 784,
din = 1), randomly permuted.

Pixel-by-Pixel CIFAR-10 (Krizhevsky et al., 2009): Flattened RGB images
(T = 1024, din = 3).

Noise-Padded CIFAR-10: Row-wise flattened RGB with noise padding
(T = 1000, din = 96).
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Experiments

Experimental Results Across Tasks

Across all datasets, ParaRNN-based models demonstrate competitive or improved
performance while preserving training efficiency.

RNN ParaRNN LSTM ParaLSTM GRU ParaGRU BRT ParaBRT

(a) Time Series Forecasting – Total Wins

7 27 7 26 8 26 15 21

(b) Permuted MNIST – Accuracy (%)

90.31 93.93 94.20 94.10 94.44 94.67 97.87 97.90

(c) Pixel-by-Pixel CIFAR-10 – Accuracy (%)

31.80 36.37 66.35 66.40 70.61 70.06 74.01 74.06

(d) Noise-Padded CIFAR-10 – Accuracy (%)

– – 56.71 57.07 52.90 53.40 68.85 68.91

Table: Performance comparison between Vanilla and Para variants for RNN, LSTM,
GRU, and BRT across forecasting and classification tasks. Bold indicates best
performance.
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Experiments

Conclusion

Theoretical Contributions

Introduce a principled decomposition of recurrent matrices to decouple
recurrent dynamics.

Propose the concept of recurrence features, depicting the elementary
temporal patterns that networks capture at the granular level.

Provide an essential initial stride toward interpretable model behaviors, paving
the way for enhancing the design of complex sequential data modeling.

Engineering Contributions: ParaRNN Framework

Propose ParaRNN, a novel framework that serves as a computationally
efficient alternative to many recurrent models.

Provide a guideline for hyperparameter selection to balance the trade-off
between recurrence feature richness and computational efficiency.

Extensible to various RNN variants and modern architectures (e.g.,
Transformer-based models).
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Thank you!
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