

SCHOOL OF **COMPUTING** & DATA SCIENCE The University of Hong Kong

On the Sampling Theory for Auto-Regressive **Diffusion Inference**

May. 28-29, 2025 HKU IDS Interdisciplinary Workshop – Exploring the Foundations: Fundamental AI and Theoretical Machine Learning Joint work with Xunpeng Huang, Yujin Han, Hanze Dong, Yi Zhang, Yian Ma, and Tong Zhang

HKU Musketeers Foundation Institute of Data Science 香港大學同心基金數據科學研究院

Difan Zou

Diffusion Model

Sohl-Dickstein et al, ICML 2015

Adding noise via OU process

 $p_0(x)$

 $p_T^{\leftarrow}(x) \approx p_0(x)$

Denoising via reversing OU process

 $p_0^{\leftarrow}(x) = N(0,\mathbf{I})$

- the discrete space.
- next-token prediction using transformer models.

https://deepgenerativemodels.github.io/notes/autoregressive/

The data is decomposed into $x = [x_1, x_2, \dots, x_n]$, each token is encoded in

> The tokens are generated in a sequential manner: $x_k \sim p(x | x_1, \dots, x_{k-1})$ In the standard AR generative model, $p(\cdot | x_1, \dots, x_{k-1})$ is implemented as

AR Diffusion Inference

- Vhen modeling the conditional distribution $p(\cdot | x_1, \dots, x_{k-1})$, using **discrete** encoding may lead to information loss.
- AR diffusion inference leverages diffusion model to model $p(\cdot | x_1, \dots, x_{k-1})$, which enables conditional generation in continuous space.

Li et al., Autoregressive Image Generation without Vector Quantization, NeurIPS 2024

AR Diffusion Inference

- Procedure of AR diffusion model:
 - Decompose the data x into K parts.
 - Given the previous tokens x_1, \ldots, x_k (in continuous space), we first leverage a encoder g_{θ_a} to get the condition embedding z =
 - $x_{k+1} = s_{\theta}(\xi, k, z).$

$$g_{\theta_e}(x_{[1:k]}).$$

Then, we leverage the conditional diffusion model s_{θ} to generate the next token

AR Diffusion Model VS. Standard Diffusion Model

- Some facts:
 - > When K = 1, AR DM reduces to the standard DM.
 - AR DM learn many conditional probabilities, while standard DM directly learns the joint distribution.
 - AR DM needs to perform inference in a sequential manner (token-by-token), while standard DM generates data in parallel.
 - Each step of AR DM operates on the space with low dimension, while DM works on full dimension space.

Goal of our work: build the theoretical foundation of AR DM to explain the pros and cons of the auto-regressive paradigm.

Sampling Error of AR Diffusion Model

Inference Process

Sampling error analysis:

Our analysis needs to (1) study single-step sampling error; and (2) study the error propagation during AR process.

In each step, the DM sampling process $\hat{p}_{\theta}(\cdot | x_1, \dots, x_k)$ could lead to sampling error. The single-step error will accumulate during the sequential sampling process.

DM Sampling Algorithm: DDPM

Forward process: adding noise

 $p_{t|0}(\mathbf{x}_t \,|\, \mathbf{x}_0)$

Reverse process: generating via denoising $p_{t|t-1}(\mathbf{x}_{t-1} | \mathbf{x}_t) \approx N(\mu(\mathbf{x}_t))$

Data distribution

=
$$N(\alpha_t \mathbf{x}_0, \beta_t \mathbf{I})$$
 Gaussian Transition Kernel

$$t, t), \Sigma(\mathbf{x}_t, t))$$

Use a gaussian kernel to approximate the single reverse step.

Theoretical Analysis for DDPM

Error Decomposition of DDPM

$$d\mathbf{x}_{t}^{\leftarrow} = \left(\mathbf{x}_{t}^{\leftarrow} + \mathbf{v}_{\theta}(\mathbf{x}_{k\eta}^{\leftarrow}, k)\right) dt + \sqrt{2} dB_{t}, \quad t \in [k\eta, (k+1)\eta]$$
• Truncation error: $p(\mathbf{x}_{T}) \approx N(0, \mathbf{I})$
• Discretization error: $\nabla \ln p(\mathbf{x}_{k\eta}) \approx \nabla p_{t}(\mathbf{x})$
• Score estimation error: $\mathbf{v}_{\theta}(\mathbf{x}) \approx \nabla p_{T-t}(\mathbf{x})$
• Error propagation

 $\mathrm{d}\hat{\mathbf{x}}_t = (\hat{\mathbf{x}}_t + 2\nabla \ln p_{T-t}(\hat{\mathbf{x}}_t)) \mathbf{c}$

$$\mathrm{d}t + \sqrt{2}\mathrm{d}B_t, \quad \hat{\mathbf{x}}_0 \sim p_T.$$

Theoretical Analysis for DDPM

To guarantee small sampling error

Discretization error: $\|\nabla \ln p(\mathbf{x}_{k\eta}) - \nabla p_t(\mathbf{x})\| \sim \operatorname{poly}(\eta)$

Chen, S., Chewi, S., Li, J., Li, Y., Salim, A., & Zhang, A. Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions. In The Eleventh International Conference on Learning Representations. Lee, H., Lu, J., & Tan, Y. (2022). Convergence for score-based generative modeling with polynomial complexity. Advances in Neural Information Processing *Systems*, *35*, 22870-22882.

• Consequently, we need to use a large iteration number $K = T/\eta \sim \log(1/\epsilon)/\eta$.

Revisit DDPM Algorithm

DDPM algorithm aims to sample \mathbf{x}_{t-1} given \mathbf{x}_t using a Gaussian kernel. $p_{t-1|t}(\mathbf{x}_{t-1} \mid \mathbf{x}_t) \approx$

- Gaussian kernel is easy to implement.
- Gaussian approximation can only be good when η is small.
- Then we must require many reverse sampling steps (T/η) .
- What if we consider larger η ?

$$\approx N(\mu(\mathbf{x}_t, t), \boldsymbol{\Sigma}(\mathbf{x}_t, t))$$

We can get the exact formula of the **reverse transition kernel** $p_{t|t'}(\mathbf{x}_t | \mathbf{x}_{t'})$

$$p_{t|t'}(\mathbf{x}_t \,|\, \mathbf{x}_{t'}) \propto p_{t|t'}(\mathbf{x}_t \,|\, \mathbf{x}_{t'}) \cdot p_{t'}(\mathbf{x}_{t'}) = p_{t'|t}(\mathbf{x}_{t'} \,|\, \mathbf{x}_{t}) \cdot p_{t}(\mathbf{x}_{t'})$$

Forward transition kernel, which is a Gaussian

Marginal distribution at time *t*, $\propto e^{-f_t(\mathbf{x}_t)}$

$$-f_t(\mathbf{x}) - \frac{\|\mathbf{x}' - \mathbf{x} \cdot e^{-2(t'-t)}\|^2}{2(1 - e^{-2(t'-t)})}\right)$$

- When t' t is very small, the quadratic term dominates, the kernel can be well approximated by Gaussian, i.e., DDPM.
- When t' t is large, we need to use more complicated sampler to achieve high-accuracy sampling.

Trade-off of RTK $\mathbf{X}_{t-1} \quad \mathbf{X}_t$

Consider fixed segment

- subproblems increases (e.g., DDPM).
- becomes easier.
- How to pick a proper η ?

• Smaller η implies easier sampling subproblems, but the number of

Larger η implies smaller number of subproblems, but the problem

Hardness of RTK

 $p_{(k-1)\eta|k\eta}(\mathbf{x} \,|\, \mathbf{x}') = \exp$ **RTK** target

We can verify the **log-concavity**, let's check the Hessian of $\log p_{(k-1)\eta|k\eta}(\mathbf{x} \mid \mathbf{x}')$

$$-\nabla_{\mathbf{x}}^{2}\log p_{(k-1)\eta|k\eta}(\mathbf{x} \,|\, \mathbf{x}') = -\nabla_{\mathbf{x}}^{2}f_{(k-1)\eta}(\mathbf{x}) + \frac{e^{-2\eta}}{1 - e^{2\eta}}$$

- Assume that $f_t(\mathbf{x})$ is L-smooth.
- Then we can set $\eta \leq 1/2 \cdot \log(1 + 1/(2L))$ to ensure the log-concavity.

$$p\left(-f_{(k-1)\eta}(\mathbf{x}) - \frac{\|\mathbf{x}' - \mathbf{x} \cdot e^{-2\eta}\|^2}{2(1 - e^{-2\eta})}\right)$$

• We can just set $\eta = 1/2 \cdot \log(1 + 1/(2L))$ to ensure a small number of subproblems.

Diffusion Inference with RTK

Algorithm INFERENCE WITH REVERSE TRANSITION KERNEL (RTK)

- size η , required convergence accuracy ϵ ;
- 2: for k = 0 to K 1 do
- 3: transition kernel, i.e.,

$$\boldsymbol{\rho}_{(k+1)\eta|k\eta}^{\leftarrow}(\boldsymbol{z}|\hat{\boldsymbol{x}}_{k\eta}) \propto \exp\left(-g(\boldsymbol{z})\right) \coloneqq \exp\left(-f_{(K-k-1)\eta}(\boldsymbol{z}) - \frac{\|\hat{\boldsymbol{x}}_{k\eta} - \boldsymbol{z} \cdot \boldsymbol{e}^{-\eta}\|^2}{2(1 - \boldsymbol{e}^{-2\eta})}\right).$$
(23)

4: **end for**

Efficiently solving RTK is crucial.

5: return $\hat{\mathbf{x}}_{K}$.

1: Input: Initial particle $\hat{\mathbf{x}}_0$ sampled from the standard Gaussian distribution, Iteration number K, Step

Draw sample $\hat{\mathbf{x}}_{(k+1)\eta}$ with MCMCs from $\hat{p}_{(k+1)\eta|k\eta}(\cdot|\hat{\mathbf{x}}_{k\eta})$ which is closed to the ground-truth reverse

Solving RTK

. . .

Sampling from the distribution $p_{(k-1)\eta|k\eta}$

Multiple sampling algorithms can be applied:

- Unadjusted Langevin Algorithms (ULA)
- Underdamped Langevin Dynamics (ULD)
 - provide fast sampling and requires mild assumptions
- Metropolis Adjusted Langevin Algorithms (MALA)
 - Provide even faster sampling but need stricter assumptions
- Hamiltonian Monte Carlo (HMC)

$$(\mathbf{x} | \mathbf{x}') = \exp\left(-f_{(k-1)\eta}(\mathbf{x}) - \frac{\|\mathbf{x}' - \mathbf{x} \cdot e^{-2\eta}\|^2}{2(1 - e^{-2\eta})}\right)$$

RTK with ULD

Algorithm 3 ULD FOR RTK INFERENCE

- $\mathcal{N}(\mathbf{0}, e^{2\eta} 1) \otimes \mathcal{N}(\mathbf{0}, \mathbf{I});$
- 3: for t = s to S 1 do
- Draw noise sample pair (ξ_s^z, ξ_s^v) from a Gaussian type distribution. 4:
- $\hat{\boldsymbol{z}}_{s+1} = \hat{\boldsymbol{z}}_s + \gamma^{-1} (1 e^{-\gamma\tau}) \hat{\boldsymbol{v}}_s \gamma^{-1} (\tau \gamma^{-1} (1 e^{-\gamma\tau})) s_{\theta}(\hat{\boldsymbol{z}}_s) + \xi_s^z$ 5:
- $\hat{\boldsymbol{v}}_{s+1} = e^{-\gamma\tau} \hat{\boldsymbol{v}}_s \gamma^{-1} (1 e^{-\gamma\tau}) s_{\theta}(\hat{\boldsymbol{z}}_s) + \xi_t^v$ 6:
- 7: return \boldsymbol{z}_S ;

Here the random Gaussian vectors are generated via:

$$(\xi_s^z, \xi_s^v) \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} \frac{2}{\gamma} \left(\tau - \frac{2}{\gamma} \left(\mathbf{1} - e^{-\gamma \tau} \right) \right) + \frac{1}{2\gamma} \left(\mathbf{1} - e^{-2\gamma \tau} \right) & \frac{1}{\gamma} \left(\mathbf{1} - 2e^{-\gamma \tau} + e^{-2\gamma \tau} \right) \\ \frac{1}{\gamma} \left(\mathbf{1} - 2e^{-\gamma \tau} + e^{-2\gamma \tau} \right) & \mathbf{1} - e^{-2\gamma \tau} \end{bmatrix} \right)$$

1: Input: Returned particle of the previous iteration x_0 , current iteration number k, inner iteration number S, inner step size τ , velocity diffusion coefficient γ , required convergence accuracy ϵ ; 2: Initialize the particle and velocity pair, i.e., (\hat{z}_0, \hat{v}_0) with a Gaussian type product measure, i.e.,

> Neural network approximation of the score function $\nabla f_{\rm s}(\hat{\mathbf{z}}_{\rm s})$

RTK with ULD: Rates

Theorem: Under the assumptions on the score estimation

$$\eta = 1/2 \cdot \log[(2L+1)/2L]$$
 and $K = 4L \cdot \log[((1+L^2)d + ||\nabla f_*(\mathbf{0})||^2)^2 \cdot \epsilon^{-2}]$

and implement Step 3 of Alg. 2 with ULD. For the k-th run of ULD, we require Gaussian-type initialization and high-accurate score estimation, i.e.,

$$\hat{\pi}_0 = \mathcal{N}(\mathbf{0}, e^{2\eta} - 1) \otimes \mathcal{N}(\mathbf{0}, \mathbf{I}) \text{ and } \epsilon_{\text{score}} = \tilde{\mathcal{O}}(\epsilon/\sqrt{L}).$$

If we set the hyperparameters of inner loops as follows. the step size and the iteration number as

$$\tau = \tilde{\Theta} \left(\epsilon d^{-1/2} L^{-1/2} \cdot \left(\log \left[\frac{L(d + m_2^2 + \|\boldsymbol{x}_0\|^2)}{\epsilon^2} \right] \right)^{-1/2} \right)$$
$$S = \tilde{\Theta} \left(\epsilon^{-1} d^{1/2} \cdot \left(\log \left[\frac{L(d + m_2^2 + \|\boldsymbol{x}_0\|^2)}{\epsilon^2} \right] \right)^{1/2} \right).$$

It can achieve $\|\hat{p}_{K\eta} - p_*\|_{TV} \lesssim \epsilon$ with an $\tilde{\mathcal{O}}(L^2 d^{1/2} \epsilon^{-1})$ gradient complexity.

RTK with MALA

Algorithm 2 MALA/PROJECTED MALA FOR RTK INFERENCE

- number S, inner step size τ , required convergence accuracy ϵ ;
- 2: Draw the initial particle \mathbf{z}_0 from

$$rac{\mu_0(\mathrm{d}oldsymbol{z})}{\mathrm{d}oldsymbol{z}} \propto \exp\left(-L\|oldsymbol{z}\|^2 - rac{\|oldsymbol{x}_0 - e^{-\eta}oldsymbol{z}\|^2}{2(1 - e^{-2\eta})}
ight).$$

- 3: for s = 0 to S 1 do
- Draw a sample \tilde{z}_s from the Gaussian distribution 4:
- if $z_{s+1} \notin \mathcal{B}(z_s, r) \cap \mathcal{B}(\mathbf{0}, R)$ then 5:
- $\boldsymbol{z}_{s+1} = \boldsymbol{z}_s;$ 6:
- continue; 7:
- Calculate the accept rate as 8:

$$= \min \left\{ 1, \exp \left(r_g(\boldsymbol{z}_s, \tilde{\boldsymbol{z}}_s) + \frac{\|\tilde{\boldsymbol{z}}_s - \boldsymbol{z}_s + \tau \cdot s_\theta(\boldsymbol{z}_s)\|^2 - \|\boldsymbol{z}_s - \tilde{\boldsymbol{z}}_s + \tau \cdot s_\theta(\tilde{\boldsymbol{z}}_s)\|^2}{4\tau} \right) \right\}$$

Update the particle $\boldsymbol{z}_{s+1} = \tilde{\boldsymbol{z}}_s$ with probability a, otherwise $\boldsymbol{z}_{s+1} = \boldsymbol{z}_s$. 9: 10: return \mathbf{z}_S ;

1: Input: Returned particle of the previous iteration x_0 , current iteration number k, inner iteration

ribution
$$\mathcal{N}(\boldsymbol{z}_s - \tau \cdot s_{\theta}(\boldsymbol{z}_s), 2\tau \boldsymbol{I});$$

▷ This condition step is only activated for Projected MALA.

MH Acceptance probability for mitigating the bias

$r_{q}(\mathbf{z}', \mathbf{z}) \approx \log p_{t}(\mathbf{z}') - \log p_{t}(\mathbf{z})$ denotes the approximation of the energy difference.

RTK with MALA: Assumptions

Assumptions:

- For all $t \ge 1$, the score ∇p_t is *L*-Lipschitz.
- The second moment of the data distribution p_* is upper bounded.
- The score and energy difference estimation errors satisfy: for all z and z'

$$\|s_{\theta,t}(\mathbf{z}) - \nabla \log p_t(\mathbf{z})\| \le \epsilon_{\text{score}}$$

$$|r_t(\mathbf{z}',\mathbf{z}) + \log p_t(\mathbf{z}',\mathbf{z})|$$

MALA algorithm needs both score, i.e., $\nabla \log p$ and the energy difference $\log p(z) - \log p(z')$.

 $\mathbf{z}') - \log p_t(\mathbf{z}) \leq \epsilon_{\text{energy}}$

RTK with MALA: Rates

Theorem: Under the assumptions on the score and energy difference estimation

Suppose the estimation errors of score and energy difference satisfy

$$\epsilon_{\rm score} \leq \frac{\rho \epsilon}{L d^{1/2}} \quad {\rm and} \quad \epsilon_{\rm energy} \leq \frac{\rho \epsilon}{L^2 \cdot \left(d^{1/2} + m_2 + Z \right)},$$

If we implement Alg. 2 with the projected version of MALA with the following hyperparameter settings

$$\eta = \frac{1}{2} \log \frac{2L+1}{2L},$$

and

 $rac{\mu_0(\mathrm{d}oldsymbol{z})}{\mathrm{d}oldsymbol{z}}\propto\mathsf{ex}$

it has $\|\hat{p}_{K\eta} - p_*\|_{TV} \leq \tilde{\mathcal{O}}(\epsilon)$ with an $\mathcal{O}(L^4 \rho^{-2} \cdot (d + m_2^2)^2 Z^2 \cdot \log(d/\epsilon))$ complexity.

$$K = 4L \cdot \log \frac{(1+L^2)d + \|\nabla f_*(\mathbf{0})\|^2}{\epsilon^2}$$

$$\left\langle \mathsf{p}\left(-L\|\boldsymbol{z}\|^2 - \frac{\|\hat{\boldsymbol{x}}_k - \boldsymbol{e}^{-\eta}\boldsymbol{z}\|^2}{2(1 - \boldsymbol{e}^{-2\eta})}
ight),$$

Comparison with Other Methods

Results	Algorithm	Complexity
Chen et al. (2022)	DDPM (SDE-based)	$ ilde{\mathcal{O}}(L^2 d\epsilon^{-2})$
Chen et al. (2024)	DPOM (ODE-based)	$ ilde{\mathcal{O}}(L^3 d\epsilon^{-2})$
Chen et al. (2024)	DPUM (ODE-based)	$\tilde{\mathcal{O}}(L^2 d^{1/2} \epsilon^{-1})$
Li et al. (2023)	ODE-based sampler	$\tilde{\mathcal{O}}(d^3\epsilon^{-1})$
Ours	RTK-MALA	$O(L^4 d^2 \log(d/\epsilon))$
Ours	RTK-ULD	$\tilde{\mathcal{O}}(L^2 d^{1/2} \epsilon^{-1})$

high-accuracy sampling tasks.

Table. Comparison with prior works for RTK-based methods. The complexity denotes the number of calls for the score estimation to achieve $\|\hat{p}_{K\eta} - p_*\|_{TV} \leq \tilde{\mathcal{O}}(\epsilon)$. *d* and ϵ mean the dimension and error tolerance. Compared with the state-of-the-art result, RTK-ULD achieves the best dependence for both d and ϵ . Though RTK-MALA requires slightly stricter assumptions and worse dimension dependence, a linear convergence w.r.t. ϵ makes it suit

Numerical Experiments: Sampling Gaussian Mixture

Numerical Experiments: Sampling Gaussian Mixture

Autoregressive Diffusion Model

adapt the result of single diffusion model, we need:

- Each conditional score $\nabla \log p_t(x | x_1, \dots, x_k)$ should be Lipschitz
- Each target conditional distribution $p_*(\cdot | x_1, \dots, x_k)$ need to have bounded second moment.
- Each score estimation need to be small.

$$\mathbb{E}_{p_{t}(\cdot|x_{1},...,x_{k})}\left[\|s_{\theta,t}(\mathbf{z};x_{1},...,x_{k}) - \nabla \log p_{t}(\mathbf{z}|x_{1},...,x_{k})\|^{2}\right] \leq \epsilon_{\text{score}}^{2} \quad \forall k = 1,...,K$$

For autoregressive diffusion model, we need to perform K diffusion inference steps. Then, if direct

Do we really need these assumptions for autoregressive diffusion model?

Autoregressive Diffusion Model: Assumptions

In fact, we do not need to make assumptions on all conditional targets, but only require • The target distribution p_* satisfies $\|\nabla^2 \log p_*\|_2 \le L$, $\|\nabla \log p_*\|_2 \le \sqrt{L}$

- The target distribution p_* has bounded moment.
- The average of score estimation errors should be small:

$$\frac{1}{K} \sum_{k=1}^{K} \mathbb{E}_{p_t(\cdot|x_1,\dots,x_k)} \left[\|s_{\theta,t}(\mathbf{z};x_1,\dots,x_k) - \nabla \log p_t(\mathbf{z}|x_1,\dots,x_k)\|^2 \right] \le \epsilon_{\text{score}}^2$$

The assumption is almost as mild as that for standard diffusion model!

Autoregressive Diffusion Model: General Theory

Theorem: Under the aforementioned assumptions and apply appropriate learning rate for diffusion sampling, let η be the base stepsize and R be the iteration number in each DM, then considering DDPM solver for diffusion inference, we have

$$\operatorname{KL}\left(p_* \| \hat{p}_*\right) \lesssim 2e^{-2T}L \cdot (m_0 + d) + \left(L^2 R \eta^2 + T \eta\right) \cdot d + \eta m_0 + \eta K R \cdot \epsilon_{\text{score}}^2.$$

Truncation error

- Discretization error is accumulated in dimension: $d = \sum_{i=1}^{K} d_i$

Huang et al., Capturing Conditional Dependence via Auto-regressive Diffusion Models, ArXiv 2025

Accumulated discretization error Accumulated score estimation error

• The score estimation error is accumulated with an additional K factor (but ϵ_{score} is different).

Autoregressive Diffusion Model: General Theory

Theorem: Under the aforementioned assumptions and apply appropriate learning rate for diffusion sampling, let η be the base learning rate and R be the iteration number in each DM, then considering DDPM solver for diffusion inference, we have

$$\mathrm{KL}\left(p_* \| \hat{p}_*\right) \lesssim 2e^{-2T} L \cdot (m_0 + d) + (L^2 R \eta^2 + T \eta) \cdot d + \eta m_0 + \eta K R \cdot \epsilon_{\mathrm{score}}^2.$$

Accumulated discretization error

- assumptions.)
 - For DDPM, the total complexity will be $\tilde{O}(Kd\epsilon^{-2})$.
 - For RTK-ULD, the total complexity will be $\tilde{O}(Kd^{1/2}\epsilon^{-1})$.

Autoregressive diffusion model requires longer inference time!

• The discretization error can be improved using RTK-ULD or RTK-MALA (need stronger

Autoregressive Diffusion Model: Conditional Dependency

Lemma: Under the aforementioned assumptions and apply appropriate learning rate for diffusion sampling, considering DDPM solver, we have

$$\begin{split} & \operatorname{KL}\left(p_{*,k+1|[1:k]}(\cdot|\boldsymbol{x}_{[1:k]})\big\|\hat{p}_{*,k+1|[1:k]}(\cdot|\boldsymbol{x}_{[1:k]})\right) \\ & \lesssim e^{-2T} \cdot \left(2Ld_{k+1} + \mathbb{E}_{p_{*,k+1|[1:k]}(\cdot|\boldsymbol{x}_{[1:k]})}\left[\|\mathbf{y}\|^{2}\right]\right) + \eta \cdot \sum_{r=0}^{R-1} \tilde{L}_{k+1,r}(\boldsymbol{\theta}|\boldsymbol{x}_{[1:k]}) + d_{k+1}L^{2}R\eta^{2} \\ & + d_{k+1}T\eta + \eta \mathbb{E}_{p_{*,k+1|[1:k]}(\cdot|\boldsymbol{x}_{[1:k]})}\left[\|\mathbf{y}\|^{2}\right]. \end{split}$$

- For any conditional distribution, AR DM can well capture it with appropriate choice of step size.
- This implies that the dependency between tokens x_i and x_j can be well reflected in the generated data $x = [x_1, \dots, x_K]$

Single Diffusion Model: Possible Failure

Lemma 4.4. Consider random vectors $\mathbf{y} \in \mathbb{R}^{d_{k+1}}$ and $\mathbf{x} \in \mathbb{R}^{d_1+d_2+\cdots+d_k}$. For any error threshold $\varepsilon \in (0, 1/2]$ and for any $M \in \mathbb{R}$, there exists a pair of Gaussian probability densities $(p_*(\mathbf{y}, \mathbf{x}), \hat{p}_*(\mathbf{y}, \mathbf{x})), \text{ such that } \mathrm{KL}(p_*(\mathbf{y}, \mathbf{x}) \| \hat{p}_*(\mathbf{y}, \mathbf{x})) \leq \varepsilon, \text{ while } \mathrm{KL}(p_*(\mathbf{y}|\mathbf{x}) \| \hat{p}_*(\mathbf{y}|\mathbf{x})) > \varepsilon$ $M^2 \cdot \| \boldsymbol{x}_{(1:d_{k+1})} \|^2.$

- learning the conditional dependency between different parts in the image.
- A simple case is $x = [x_1, x_2], x_1 \sim N(0)$
 - conditioned).
 - Th

• Single diffusion model can well capture the joint distribution, while may be failed in

(0,1),
$$x_2 = x_1 + N(0,\epsilon^2)$$

• The joint distribution x has very large condition number (covariance matrix is kind of ill-

2

Autoregressive Diffusion Model: Conditional Dependency

- \bullet capture the inter-patch dependencies, and achieves lower training loss.
- This aligns with the theoretical results on conditional dependency.

When the dependency appear among different patches of the data, AR DM can better

'O

Numerical Experiments: Task 1

- This aligns with the theoretical results in general setting.

• When the dependency does not appear among different patches of the data, AR DM can not capture the inter-patch dependencies, and achieves substantially larger training loss.

Takeaway

- AR diffusion model and Standard diffusion model
 - We developed an RTK framework, which can be used to develop a family of diffusion inference algorithms.
 - We developed the sampling theory for AR diffusion model, which shows that: AR diffusion model behaves worse than standard DM, in general settings. AR diffusion model can better capture inter-patch dependencies than
- - standard DM.