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Diffusion Model

Sohl-Dickstein et al, ICML 2015

Adding noise via OU process

po(x) ﬁ pT(x) ~ N(O,I)
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r (X) ® pp(x) po (x) = N(O,I)

Denoising via reversing OU process



Auto-regressive Generative Models (e) AR, rstor ode
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» The data is decomposed into x = |x;, X, ...,xn], each token is encoded In
the discrete space.

» The tokens are generated in a sequential manner: x;,, ~ p(x|xy, ..., X;._)

> In the standard AR generative model, p( - | x;, ..., x;_;) is implemented as
next-token prediction using transformer models.

https://deepgenerativemodels.github.io/notes/autoregressive/



AR Diffusion Inference
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diffusion loss for p(x|2)

> When modeling the conditional distribution p( - | xy, ..., X;_;), using discrete
encoding may lead to information loss.

> AR diffusion inference leverages diffusion model to model p( - | x;, ..., x;_1),
which enables conditional generation in continuous space.

Li et al., Autoregressive Image Generation without Vector Quantization, NeurlPS 2024



AR Diffusion Inference

» Procedure of AR diffusion model:
» Decompose the data x into K parts.
» Given the previous tokens X, ..., X; (In continuous space), we first leverage a encoder g,

to get the condition embedding 7 = gge(x[lzk]).

» Then, we leverage the conditional diffusion model s, to generate the next token

xk-l—l — SH(éa ka Z)

Li et al., Autoregressive Image Generation without Vector Quantization, NeurlPS 2024



AR Diffusion Model VS. Standard Diffusion Model

» Some facts:

» When K = 1, AR DM reduces to the standard DM.

> AR DM learn many conditional probabillities, while standard DM directly learns the joint
distribution.

» AR DM needs to perform inference in a sequential manner (token-by-token), while
standard DM generates data in parallel.

» Each step of AR DM operates on the space with low dimension, while DM works on
full dimension space.

Goal of our work: build the theoretical foundation of AR DM to

explain the pros and cons of the auto-regressive paradigm.



Sampling Error of AR Diffusion Model

» Inference Process

» Sampling error analysis:

» In each step, the DM sampling process py( - | xi, ..., X;) could lead to sampling error.

> The single-step error will accumulate during the sequential sampling process.

Our analysis needs to (1) study single-step sampling error; and

(2) study the error propagation during AR process.



DM Sampling Algorithm: DDPM

» Forward process: adding noise

Gaussian Transition Kernel

Use a gaussian kernel to approximate
the single reverse step.

Gaussian
noise

Data
distribution

df(t — )/Et + 2V In PT—t()A(t)) dt + \/idBt, )/Eo ~ PT.



Theoretical Analysis for DDPM

» Error Decomposition of DDPM

dxj~ = (X{~ + Vo(Xi,, k)) dt + V2dBy;, t € [kn, (k + 1)n]

AN

N

e Truncation error: p(X;) =~ N(0,I)

o Discretization error: VIn p(Xy,) & Vp(X)

 Score estimation error: Vy(X) & Vp;_(X)

* Error propagation

d%; = (X¢ + 2V Inpr_¢(X;)) dt + V2dB;, %o ~ pr-.



Theoretical Analysis for DDPM

» To guarantee small sampling error

Discretization error: || VInp(x,,) — Vp(X)|| ~ poly(r)

N

> We need to use small stepsize 1 to ensure small discretization error.

» Consequently, we need to use a large iteration number K = T/n ~ log(1/€)/n.

Chen, S., Chewi, S., Li, J., Li, Y., Salim, A., & Zhang, A. Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions.
In The Eleventh International Conference on Learning Representations.

Lee, H., Lu, J., & Tan, Y. (2022). Convergence for score-based generative modeling with polynomial complexity. Advances in Neural Information Processing
Systems, 35, 22870-22882.



Revisit DDPM Algorithm

X1 X

DDPM algorithm aims to sample X,_; given X, using a Gaussian kernel.

pt—l\t(xt—l | X,) ~ N(u(X,, 1), 2(X,, 1))

e Gaussian kernel is easy to implement.

e (Gaussian approximation can only be good when 7 is small .
e Then we must require many reverse sampling steps (17/7).

 What if we consider larger 17



Reverse Transitional Kernel (RTK)

Forward transition kernel,
which is a Gaussian

o HX/ X e—2(t'—t)H2
ptlt’(X | X)) =exp| —/f(X) 2(1 — e-20-0)




Reverse Transitional Kernel (RTK)

Reverse transitional pyX|X) = exp( — f(X)
kernel

”X’ — X - e—Z(t’—t)HZ
2(1 — e-2-1)

e When t' — tis very small, the quadratic term dominates, the kernel can be
well approximated by Gaussian, i.e., DDPM.

e When t' — tis large, we need to use more complicated sampler to achieve
high-accuracy sampling.



Trade-off of RTK

Consider fixed p(k—l)nlkn(x X)) = exp< _f(k—l)n(x)
segment

Ix = x - e~
2(1 — e—2n)

e Smaller 17 implies easier sampling subproblems, but the number of
subproblems increases (e.g., DDPM).

e Larger n implies smaller number of subproblems, but the problem
becomes easier.

e How to pick a proper 1?



Hardness of RTK

X" —x - e_z”l\z)

RTK target Pl 1y X | X') = exp( ~ Jik=1y(%) 2(1 — e=2n)

We can verify the log-concavity, let’s check the Hessian of 10g p_,1,(X [ X)

e~

- V>2<10gp(k—1)f7|kn(X X)) = — Viﬁk—l)n(x) : 1 — e2n
e Assume that f,(X) is L-smooth.

e Thenwecansetn < 1/2 -log(l + 1/(2L)) to ensure the log-concavity.
e Wecanjustsety = 1/2-1log(1 + 1/(2L)) to ensure a small number of subproblems.



Diffusion Inference with RTK

Algorithm INFERENCE WITH REVERSE TRANSITION KERNEL (RTK)

1: Input: Initial particle Xo sampled from the standard Gaussian distribution, Iteration number K, Step
size n, required convergence accuracy e;
2. fork=0to K —1do
Draw sample X 1), with MCMCs from Py 1)k, (- |Xks) Which is closed to the ground-truth reverse
transition kernel, I.e.,

_ ] |Ry — 2 - €77
p(k—|—1)77|k77(z‘xk77) X exp(—g(Z)) = eXp _f(K—k—'I)n(z) 2(1 _ 9_277) ' (23)

4: end for Efficiently solving RTK is crucial.
5: return X.




Solving RTK

X" —x - 6_2’7”2)

Sampling from the distribution  pg_ 1,1k, (X X)) = exp( = Ji=1yp(X) 2(1 — e—21)

Multiple sampling algorithms can be applied:
 Unadjusted Langevin Algorithms (ULA)
e Underdamped Langevin Dynamics (ULD)
 provide fast sampling and requires mild assumptions
e Metropolis Adjusted Langevin Algorithms (MALA)
* Provide even faster sampling but need stricter assumptions
* Hamiltonian Monte Carlo (HMC)



RTK with ULD

Algorithm 3 ULD rFOR RTK INFERENCE

1: Input: Returned particle of the previous iteration @, current iteration number £, inner iteration
number S, inner step size 7, velocity diffusion coefficient v, required convergence accuracy E¢;

2: Initialize the particle and velocity pair, i.e., (29, ?9) with a Gaussian type product measure, i.e.,
N(0, e — 1) @ N(0, I);

3: fort=sto S —1do

4: Draw noise sample pair (§7,£7) from a Gaussian type distribution.
5: 2or1 =2, +7v 11 —e "y —y M-y (1 —-e7) z
6:  Dsp1=e 70— (1—e")sp(2:) + & Neural network approximation

7. return zg; of the score function Vf.(Z)

Here the random Gaussian vectors are generated via:

(€5:€5) ~ N | 0, % (T - % (1= e_w)) ’ 217 (1—e7) % (1 -2 +e7277)

S (1—2e777 +e727) 1 — e 27




RTK with ULD: Rates

Theorem: Under the assumptions on the score estimation
n=1/2 log[(2L+ 1)/2L] and K =4L-log[((1 + L?)d + ||V£.(0)|*)? - € 2]

and implement Step 3 of Alg. 2 with ULD. For the k-th run of ULD, we require Gaussian-type initialization
and high-accurate score estimation, i.e.,

o =N(0,6 —1) @N(0,1) and  €core = O(e/VL).

If we set the hyperparameters of inner loops as follows. the step size and the iteration number as

_ -\ —1/2
O (6d1/2L1/2. (Iog L(d + m5 + || %o]*) ) / )

-

€2

i S 1/2
S— & (€1d1/2, (Iog L(d + m5 + || x0]|%) ) />.

€2

It can achieve ||pxy, — x|l S € withan O (L2d"/2e~ 1) gradient complexity.



RTK with MALA

Algorithm 2 MALA /PROJECTED MALA rOrR RTK INFERENCE

1: Input: Returned particle of the previous iteration g, current iteration number £, inner iteration
number S, inner step size 7, required convergence accuracy ¢;
2: Draw the initial particle zg from

— 2
po(dz) a2 llxo — ez
dz P ( L=l = S —e=n |-

3: fors=0toS—1do

4: Draw a sample Z; from the Gaussian distribution N (25 — 7 - s¢(2s), 271);

5: if 2511 & B(zs,7) N B(0, R) then

6: Zs11 = Zs; > This condition step is only activated for Projected MALA.
7 continue;

8

Calculate the accept rate as

— min {1’ exp ] |25 — 25 + 7 so(2s)||° — l|lzs — Zs + 7 39(53)”2) MH Acceptance probability

4t for mitigating the bias
9: Udat the artic zs 2 with obalit a, herwses_l_l S .

10: return zg;

r(z',z) & log p(z') — log p(z) denotes the approximation of the energy difference.



RTK with MALA: Assumptions

MALA algorithm needs both score, i.e., V10g p and the energy difference log p(z) — log p(z").

Assumptions:
e Forallt > 1, the score Vp,is L-Lipschitz.

e The second moment of the data distribution p. is upper bounded.

e The score and energy difference estimation errors satisfy: for all Z and z’

HSH,Z‘(Z) o Vlngt(Z)H < Escore

‘ rt(zla Z) + logpt(z,) o lngt(Z) ‘ < €energy



RTK with MALA: Rates

Theorem: Under the assumptions on the score and enerqgy difference estimation

Suppose the estimation errors of score and energy difference satisfy

< _P° d < pe
€score > Lo 72 an Cenergy > 12 . (d1/2 +m+ Z)7

If we implement Alg. 2 with the projected version of MALA with the following hyperparameter settings

n= tog 2T K gptog U E)IFIIVE(O)]
2 2L 2

and

~ _ 2
pio(2) . % — ez
—L
- ocexp( Iz~ gy |

it has ||prn — Psllpv < O(e) withan O(L*p=2 - (d + mg)2 7% - log(d/¢€)) complexity.



Comparison with Other Methods

Results Algorithm Complexity
Chen et al. (2022) DDPM (SDE-based) O(L2de?)
Chen et al. (2024) DPOM (ODE-based) O(L3de?)
Chen et al. (2024) DPUM (ODE-based)  O(L2d"/?¢~1)

Li et al. (2023)  ODE-based sampler O(d®e 1)
Ours RTK-MALA O(L*d? log(d/€))
Ours RTK-ULD O(L2d"/2e )

Table. Comparison with prior works for RTK-based methods. The complexity denotes the number of calls for the
score estimation to achieve ||px, — p«||+ < O(¢€). d and e mean the dimension and error tolerance. Compared
with the state-of-the-art result, RTK-ULD achieves the best dependence for both d and €. Though RTK-MALA

requires slightly stricter assumptions and worse dimension dependence, a linear convergence w.r.t. e makes it suit
high-accuracy sampling tasks.



Numerical Experiments: Sampling Gaussian Mixture
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Numerical Experiments: Sampling Gaussian Mixture
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Autoregressive Diffusion Model

For autoregressive diffusion model, we need to perform K diffusion inference steps. Then, if direc
adapt the result of single diffusion model, we need:

 Each conditional score Vlogp,(x|x, ..., x;) should be Lipschitz

 Each target conditional distribution p.( - | x;, ..., x;) need to have bounded second moment.

e Each score estimation need to be small.

=l 150, X1, %) = Viog pz | xy, o)) < €2ge Vh=1,...K

SCOIC

Do we really need these assumptions for autoregressive diffusion model?



Autoregressive Diffusion Model: Assumptions

In fact, we do not need to make assumptions on all conditional targets, but only require
e The target distribution p. satisfies ||VZlog p«||, < L, ||V1og p«||, < \/Z

e The target distribution p.. has bounded moment.

* The average of score estimation errors should be small:

. 2 2
— > By o 130,51 e 3) = Viog pz 31, o i)lP] < €2

The assumption is almost as mild as that for standard diffusion model!



Autoregressive Diffusion Model: General Theory

Theorem: Under the aforementioned assumptions and apply appropriate learning rate for diffusion

sampling, let ) be the base stepsize and R be the iteration number in each DM, then considering
DDPM solver for diffusion inference, we have

(LZRn + T77) d + nmo —I— nKR € '

score j

Accumulated Accumulated score
discretization error estimation error

Truncation error

« Discretization error is accumulated in dimension: d = Zi_l d

e The score estimation error is accumulated with an additional K factor (but € s different).

SCOTIC

Huang et al., Capturing Conditional Dependence via Auto-regressive Diffusion Models, ArXiv 2025



Autoregressive Diffusion Model: General Theory

Theorem: Under the aforementioned assumptions and apply appropriate learning rate for diffusion

sampling, let  be the base learning rate and R be the iteration number in each DM, then
considering DDPM solver for diffusion inference, we have

KL (p«||ps) S 2¢e 'L - (mo + d) (L2R77 + T77) d + nmo —I— nKR - e

score’

Accumulated dlscretlzatlon error

* The discretization error can be improved using RTK-ULD or RTK-MALA (need stronger
assumptions.)

e For DDPM, the total complexity will be O(Kde™?).
e For RTK-ULD, the total complexity will be O(Kd'?e™1).

Autoregressive diffusion model requires longer inference time!



Autoregressive Diffusion Model: Conditional Dependency

Lemma: Under the aforementioned assumptions and apply appropriate learning rate for diffusion
sampling, considering DDPM solver, we have

A

Px .k 1|[1k](‘m[1k]))

KL (ps k115 12 11:5])

R—1

r=0

. 2
T dk—l-lTn + Y 4”p*,k+1|[1:k]('|513[1:k]) [HY” } )

 For any conditional distribution, AR DM can well capture it with
appropriate choice of step size.

o This implies that the dependency between tokens .x; and x; can be well

reflected in the generated data x = [x;, ..., Xg]



Single Diffusion Model: Possible Failure

Lemma 4.4. Consider random vectors y € R%+1 and x € RO+t +de  For any error
threshold € € (0,1/2] and for any M € R, there exists a pair of Gaussian probability densities

(p*(Y7w)7ﬁ*(Y7a3))’ SI/tCh that KL (p*(Y7aj) ﬁ*(Y7w)) S & Whlle KL (p*(}’|$) ]/?\*(Y‘.’L‘)) >
M= - ‘lm(ltdk+1)‘|2°

e Single diffusion model can well capture the joint distribution, while may be failed in
learning the conditional dependency between different parts in the image.

e Asimple caseis x = [x,Xx,], x; ~ N(O,1), x, = x; + N(0,e?)

e The joint distribution x has very large condition number (covariance matrix is kind of ill-
conditioned).

 The distribution p(x;) and p(x, | x;) has small condition numbers.



Numerical Experiments

e Task 1: generating the samples that satisfy the physical rule of straight-line light
propagation.

e Patches with size (16*16) ensure correlated features (sun and shadow) are
sequentially discovered via AR.

= = Ground Truth: y =x
Dependency —— Estimation: y =1.09x + — 0.00, R?=0.99
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Autoregressive Diffusion Model: Conditional Dependency
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* When the dependency appear among different patches of the data, AR DM can better
capture the inter-patch dependencies, and achieves lower training loss.

* This aligns with the theoretical results on conditional dependency.



Numerical Experiments

e Task 1: generating the samples that satisfy the constraints between the lengths of two
square (32*32).

e Small patch size (8*8) disrupts these dependencies by segmenting the squares into
patches.

. — = Ground Truth: y = 1.5x
: Dependency 0401 —— Estimation:y = 1.50x + — 0.00, R2 = 1.00

’
7

/

0.35 A

0.30 A
0.25 A
0.20 A

0.154 £

0.10 0.15 0.20 0.25 0.30

h
Task Training data




Numerical Experiments: Task 1
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* When the dependency does not appear among different patches of the data, AR DM can
not capture the inter-patch dependencies, and achieves substantially larger training loss.

* This aligns with the theoretical results in general setting.



Takeaway

» AR diffusion model and Standard diffusion model

> We developed an RTK framework, which can be used to develop a family of
diffusion inference algorithms.

> We developed the sampling theory for AR diffusion model, which shows that:
> AR diffusion model behaves worse than standard DM, in general settings.

> AR diffusion model can better capture inter-patch dependencies than
standard DM.



