
On the Sampling Theory for Auto-Regressive 
Diffusion Inference

Difan Zou 

May. 28-29, 2025

HKU IDS Interdisciplinary Workshop – Exploring the Foundations: 

Fundamental AI and Theoretical Machine Learning
Joint work with Xunpeng Huang, Yujin Han, Hanze Dong, Yi Zhang, Yian Ma, 

and Tong Zhang



Diffusion Model
BACKGROUNDS
DIFFUSION MODELS

Sohl-Dickstein et al, ICML 2015

8 / 42



Auto-regressive Generative Models

‣ The data is decomposed into , each token is encoded in 
the discrete space.


‣ The tokens are generated in a sequential manner: 


‣ In the standard AR generative model,  is implemented as 
next-token prediction using transformer models.

x = [x1, x2, …, xn]

xk ∼ p(x |x1, …, xk−1)

p( ⋅ |x1, …, xk−1)

https://deepgenerativemodels.github.io/notes/autoregressive/



AR Diffusion Inference

‣ When modeling the conditional distribution , using discrete 
encoding may lead to information loss.


‣ AR diffusion inference leverages diffusion model to model , 
which enables conditional generation in continuous space. 

p( ⋅ |x1, …, xk−1)

p( ⋅ |x1, …, xk−1)

Li et al., Autoregressive Image Generation without Vector Quantization, NeurIPS 2024



AR Diffusion Inference

‣ Procedure of AR diffusion model:


‣ Decompose the data  into  parts.


‣ Given the previous tokens  (in continuous space), we first leverage a encoder  

to get the condition embedding .


‣ Then, we leverage the conditional diffusion model  to generate the next token 
.

x K
x1, …, xk gθe

z = gθe
(x[1:k])

sθ

xk+1 = sθ(ξ, k, z)

Li et al., Autoregressive Image Generation without Vector Quantization, NeurIPS 2024



AR Diffusion Model VS. Standard Diffusion Model

‣ Some facts:


‣ When , AR DM reduces to the standard DM.


‣ AR DM learn many conditional probabilities, while standard DM directly learns the joint 
distribution.


‣ AR DM needs to perform inference in a sequential manner (token-by-token), while 
standard DM generates data in parallel.


‣ Each step of AR DM operates on the space with low dimension, while DM works on 
full dimension space.

K = 1

Goal of our work: build the theoretical foundation of AR DM to 
explain the pros and cons of the auto-regressive paradigm.



Sampling Error of AR Diffusion Model

‣ Inference Process

̂pθ( ⋅ |x1)x1 x2
̂pθ( ⋅ |x1, x2) x3 …̂pθ( ⋅ |x1, …, xk) xk+1…

‣ Sampling error analysis:


‣ In each step, the DM sampling process  could lead to sampling error.


‣ The single-step error will accumulate during the sequential sampling process.

̂pθ( ⋅ |x1, …, xk)

Our analysis needs to (1) study single-step sampling error; and 
(2) study the error propagation during AR process.



DM Sampling Algorithm: DDPM
BACKGROUNDS
DIFFUSION MODELS

Sohl-Dickstein et al, ICML 2015
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‣ Forward process: adding noise 

‣ Reverse process: generating via denoising 

Data 
distribution

Gaussian 
noise

pt|0(xt |x0) = N(αtx0, βtI)

pt|t−1(xt−1 |xt) ≈ N(μ(xt, t), Σ(xt, t))

Gaussian Transition Kernel

Use a gaussian kernel to approximate 
the single reverse step. 

x0
xtxt−1

BACKGROUNDS
DIFFUSION MODELS

The inference process of diffusion models considers another way to sample from target distribution, i.e.,
pdata, which is regarded as p⇤ in the following slides. Specifically,
I It considers the forward process to be the Ornstein–Uhlenbeck (OU) process as

dxt = �xtdt +
p

2dBt , x0 ⇠ p0 / e
�f⇤ , (3)

where p⇤ / exp(�f⇤) is the data distribution. Besides, we denote pt as the density function of xt in
the forward process.

I According to the Doob’s h-Transform (Särkkä and Solin, 2019), the ideal reverse process is

dx̂t = (x̂t + 2r ln pT�t(x̂t)) dt +
p

2dBt , x̂0 ⇠ pT . (4)

We denote p̂t as s the density function of x̂t . Besides, we have xT�t = x̂t , for t 2 [0,T ].
I The practical inference process is

dx t =
�
x t + v✓(x k⌘, k)

�
dt +

p

2dBt , t 2 [k⌘, (k + 1)⌘] , x 0 ⇠ p1, (5)

where v✓(x k⌘, k) is used to approximate 2r ln pT�k⌘(x k⌘) by neural networks.
We omit the training process of diffusion models because we mainly focus on utilizing the backward path

in sampling tasks.

7 / 42



Theoretical Analysis for DDPM

‣ Error Decomposition of DDPM
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• Truncation error: 


• Discretization error: 


• Score estimation error: 


• Error propagation

p(xT) ≈ N(0,I)

∇ln p(xkη) ≈ ∇pt(x)

vθ(x) ≈ ∇pT−t(x)



Theoretical Analysis for DDPM

‣ To guarantee small sampling error

Discretization error: ∥∇ln p(xkη) − ∇pt(x)∥ ∼ poly(η)

‣ We need to use small stepsize  to ensure small discretization error.


‣ Consequently, we need to use a large iteration number .

η

K = T/η ∼ log(1/ϵ)/η

Chen, S., Chewi, S., Li, J., Li, Y., Salim, A., & Zhang, A. Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions. 
In The Eleventh International Conference on Learning Representations. 
Lee, H., Lu, J., & Tan, Y. (2022). Convergence for score-based generative modeling with polynomial complexity. Advances in Neural Information Processing 
Systems, 35, 22870-22882.



Revisit DDPM Algorithm

DIFFUSION MONTE CARLO

If we have the estimated score functions, applying the numerical solvers (e.g., DDPM) for the reverse
ODE leads to the diffusion Monte Carlo method.

11 / 42

xtxt−1

pt−1|t(xt−1 |xt) ≈ N(μ(xt, t), Σ(xt, t))

DDPM algorithm aims to sample  given  using a Gaussian kernel.xt−1 xt

• Gaussian kernel is easy to implement.


• Gaussian approximation can only be good when  is small .


• Then we must require many reverse sampling steps ( ).


• What if we consider larger ? 

η

T/η
η

η η η



Reverse Transitional Kernel (RTK)

xt′ 
xt

We can get the exact formula of the reverse transition kernel pt|t′ 
(xt |xt′ 

)

N(0,I)

pt|t′ 
(xt |xt′ 

) ∝ pt|t′ 
(xt |xt′ 

) ⋅ pt′ 
(xt′ 

) = pt′ |t(xt′ 
|xt) ⋅ pt(xt)

Forward transition kernel, 
which is a Gaussian

Marginal distribution 
at time , t ∝ e−ft(xt)

pt|t′ 
(x |x′ ) = exp( − ft(x) −

∥x′ − x ⋅ e−2(t′ −t)∥2

2(1 − e−2(t′ −t)) )



Reverse Transitional Kernel (RTK)

xt′ 
xt

N(0,I)

Reverse transitional 
kernel

• When  is very small, the quadratic term dominates, the kernel can be 
well approximated by Gaussian, i.e., DDPM.


• When  is large, we need to use more complicated sampler to achieve 
high-accuracy sampling.

t′ − t

t′ − t

pt|t′ 
(x |x′ ) = exp( − ft(x) −

∥x′ − x ⋅ e−2(t′ −t)∥2

2(1 − e−2(t′ −t)) )



Trade-off of RTK

Consider fixed 
segment

• Smaller  implies easier sampling subproblems, but the number of 
subproblems increases (e.g., DDPM).


• Larger  implies smaller number of subproblems, but the problem 
becomes easier.


• How to pick a proper ?

η

η

η

DIFFUSION MONTE CARLO

If we have the estimated score functions, applying the numerical solvers (e.g., DDPM) for the reverse
ODE leads to the diffusion Monte Carlo method.
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xtxt−1

η η η

p(k−1)η|kη(x |x′ ) = exp( − f(k−1)η(x) −
∥x′ − x ⋅ e−2η∥2

2(1 − e−2η) )



Hardness of RTK

p(k−1)η|kη(x |x′ ) = exp( − f(k−1)η(x) −
∥x′ − x ⋅ e−2η∥2

2(1 − e−2η) )RTK target

We can verify the log-concavity, let’s check the Hessian of log p(k−1)η|kη(x |x′ )

−∇2
xlog p(k−1)η|kη(x |x′ ) = − ∇2

x f(k−1)η(x) +
e−2η

1 − e2η

• Assume that  is -smooth. 


• Then we can set  to ensure the log-concavity.


• We can just set  to ensure a small number of subproblems.

ft(x) L

η ≤ 1/2 ⋅ log(1 + 1/(2L))

η = 1/2 ⋅ log(1 + 1/(2L))



Diffusion Inference with RTKREVERSE TRANSITION KERNELS
PROPOSED FRAMEWORK

Algorithm INFERENCE WITH REVERSE TRANSITION KERNEL (RTK)

1: Input: Initial particle x̂0 sampled from the standard Gaussian distribution, Iteration number K , Step
size ⌘, required convergence accuracy ✏;

2: for k = 0 to K � 1 do
3: Draw sample x̂(k+1)⌘ with MCMCs from p̂(k+1)⌘|k⌘(·|x̂k⌘) which is closed to the ground-truth reverse

transition kernel, i.e.,

p (k+1)⌘|k⌘(z|x̂k⌘) / exp (�g(z)) := exp

 
�f(K�k�1)⌘(z)�

kx̂k⌘ � z · e�⌘k2

2(1 � e�2⌘)

!
. (23)

4: end for
5: return x̂K .

According to the Lipschitz score assumption, the Hessian r
2f(K�k�1)⌘(x) = �r

2 log p(K�k�1)⌘ can be
lower bounded by �LI , which implies that RTK p(K�k�1)⌘|(K�k)⌘ will be L-strongly log-concave and
3L-smooth when the step size is set ⌘ = 1/2 · log(1 + 1/2L). This further implies that the targets of all
subsampling problems in RTK will be strongly log-concave, which can be sampled very efficiently by
various posterior sampling algorithms.
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DIFFUSION MONTE CARLO

If we have the estimated score functions, applying the numerical solvers (e.g., DDPM) for the reverse
ODE leads to the diffusion Monte Carlo method.
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xkηx(k−1)η

η η η

Efficiently solving RTK is crucial.



Solving RTK

p(k−1)η|kη(x |x′ ) = exp( − f(k−1)η(x) −
∥x′ − x ⋅ e−2η∥2

2(1 − e−2η) )Sampling from the distribution

Multiple sampling algorithms can be applied:


• Unadjusted Langevin Algorithms (ULA)


• Underdamped Langevin Dynamics (ULD)


• provide fast sampling and requires mild assumptions


• Metropolis Adjusted Langevin Algorithms (MALA)


• Provide even faster sampling but need stricter assumptions


• Hamiltonian Monte Carlo (HMC)


• …



RTK with ULD

DETAILED IMPLEMENTATIONS AND COMPLEXITY
IMPLEMENTATION WITH RTK-ULD

From Eq. 24, we know that we can achieve the TV convergence for the underlying distribution of output
particles only requiring the KL convergence to RTK for each k . A very intuitive idea is to introduce
underdamped Langevin dynamics as follows.

In this implementation, we should note

(⇠z
s , ⇠

v
s ) ⇠ N

 
0,

"
2
�

⇣
⌧ �

2
� (1 � e��⌧ )

⌘
+ 1

2�

�
1 � e�2�⌧

� 1
�

�
1 � 2e��⌧ + e�2�⌧

�

1
�

�
1 � 2e��⌧ + e�2�⌧

�
1 � e�2�⌧

#!
.
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Here the random Gaussian vectors are generated via:

Neural network approximation 
of the score function ∇fs( ̂zs)



RTK with ULD: Rates

DETAILED IMPLEMENTATIONS AND COMPLEXITY
IMPLEMENTATION WITH RTK-ULD

With RTK-ULD implementation, we have the following theorem.

Theorem 5

Under same assumptions as Theorem 4, for Alg. 2, we choose

⌘ = 1/2 · log[(2L + 1)/2L] and K = 4L · log[((1 + L2)d + krf⇤(0)k2)2
· ✏�2]

and implement Step 3 of Alg. 2 with ULD. For the k-th run of ULD, we require Gaussian-type initialization
and high-accurate score estimation, i.e.,

⇡̂0 = N (0, e2⌘
� 1)⌦N (0, I) and ✏score = Õ(✏/

p

L).

If we set the hyperparameters of inner loops as follows. the step size and the iteration number as

⌧ = ⇥̃

 
✏d�1/2L�1/2

·

✓
log


L(d + m2

2 + kx0k
2)

✏2

�◆�1/2
!

S = ⇥̃

 
✏�1d1/2

·

✓
log


L(d + m2

2 + kx0k
2)

✏2

�◆1/2
!
.

It can achieve kp̂K⌘ � p⇤kTV . ✏ with an Õ
�
L2d1/2✏�1� gradient complexity. 61 / 69
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RTK with MALA

DETAILED IMPLEMENTATIONS AND COMPLEXITY
IMPLEMENTATION WITH RTK-MALA

With the following energy difference estimation as Xu and Chi, 2024, i.e.,
Estimation error of the energy function difference: we assume an energy difference estimator r which can
approximate energy difference with an ✏energy error, i.e., |rt(z 0, z) + log pt(z 0)� log pt(z)|  ✏energy for all
z, z 0

2 Rd .
We can introduce the Metropolis-adjusted Langevin algorithm (MALA) to implement RTK as follows.

62 / 69

MH Acceptance probability 
for mitigating the bias

 denotes the approximation of the energy difference.rg(z′ , z) ≈ log pt(z′ ) − log pt(z)



RTK with MALA: Assumptions

Assumptions: 

• For all  the score  is -Lipschitz.


• The second moment of the data distribution  is upper bounded.


• The score and energy difference estimation errors satisfy: for all  and 

t ≥ 1, ∇pt L
p*

z z′ 

MALA algorithm needs both score, i.e.,  and the energy difference .∇log p log p(z) − log p(z′ )

∥sθ,t(z) − ∇log pt(z)∥ ≤ ϵscore

|rt(z′ , z) + log pt(z′ ) − log pt(z) | ≤ ϵenergy



RTK with MALA: Rates
DETAILED IMPLEMENTATIONS AND COMPLEXITY
IMPLEMENTATION WITH RTK-MALA

With RTK-MALA implementation, we have the following theorem.

Theorem 6 (Informal version of Corollary C.19)

Suppose the estimation errors of score and energy difference satisfy

✏score 
⇢✏

Ld1/2 and ✏energy 
⇢✏

L2 · (d1/2 + m2 + Z )
,

If we implement Alg. 2 with the projected version of MALA with the following hyperparameter settings

⌘ =
1
2
log

2L + 1
2L

, K = 4L · log
(1 + L2)d + krf⇤(0)k2

✏2

and
µ0(dz)

dz
/ exp

 
�Lkzk2

�
kx̂k � e�⌘zk2

2(1 � e�2⌘)

!
,

it has kp̂K⌘ � p⇤kTV  Õ(✏) with an O(L4⇢�2
·
�
d + m2

2
�2 Z 2

· log(d/✏)) complexity.

Considering the loose bound for both ⇢ and Z , the complexity will be at most Õ(L5(d + m2
2)

6) which is the
first linear convergence w.r.t. ✏ result for the diffusion inference process.
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Theorem: Under the assumptions on the score and energy difference estimation



Comparison with Other Methods
DETAILED IMPLEMENTATIONS AND COMPLEXITY
COMPLEXITY COMPARISION

Results Algorithm Complexity

Chen et al. (2022) DDPM (SDE-based) Õ(L2d✏�2)

Chen et al. (2024) DPOM (ODE-based) Õ(L3d✏�2)

Chen et al. (2024) DPUM (ODE-based) Õ(L2d1/2✏�1)

Li et al. (2023) ODE-based sampler Õ(d3✏�1)

Ours RTK-MALA O(L4d2 log(d/✏))

Ours RTK-ULD Õ(L2d1/2✏�1)

Table. Comparison with prior works for RTK-based methods. The complexity denotes the number of calls for the
score estimation to achieve kp̂K⌘ � p⇤kTV  Õ(✏). d and ✏ mean the dimension and error tolerance. Compared
with the state-of-the-art result, RTK-ULD achieves the best dependence for both d and ✏. Though RTK-MALA
requires slightly stricter assumptions and worse dimension dependence, a linear convergence w.r.t. ✏ makes it suit
high-accuracy sampling tasks.
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Numerical Experiments: Sampling Gaussian Mixture
SOME EXPERIMENTAL RESULTS ON SYNTHETIC DATA
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Autoregressive Diffusion Model

𝔼pt(⋅|x1,…,xk)[∥sθ,t(z; x1, …, xk) − ∇log pt(z |x1, …, xk)∥2] ≤ ϵ2
score ∀k = 1,…, K

For autoregressive diffusion model, we need to perform  diffusion inference steps. Then, if directly 
adapt the result of single diffusion model, we need:


• Each conditional score  should be Lipschitz


• Each target conditional distribution  need to have bounded second moment.


• Each score estimation need to be small.


K

∇log pt(x |x1, …, xk)

p*( ⋅ |x1, …, xk)

Do we really need these assumptions for autoregressive diffusion model?



Autoregressive Diffusion Model: Assumptions

1
K

K

∑
k=1

𝔼pt(⋅|x1,…,xk)[∥sθ,t(z; x1, …, xk) − ∇log pt(z |x1, …, xk)∥2] ≤ ϵ2
score

In fact, we do not need to make assumptions on all conditional targets, but only require


• The target distribution  satisfies 


• The target distribution  has bounded moment.


• The average of score estimation errors should be small:


p* ∥∇2log p*∥2 ≤ L, ∥∇log p*∥2 ≤ L

p*

The assumption is almost as mild as that for standard diffusion model!



Autoregressive Diffusion Model: General Theory

Theorem: Under the aforementioned assumptions and apply appropriate learning rate for diffusion 
sampling, let  be the base stepsize and  be the iteration number in each DM, then considering 
DDPM solver for diffusion inference, we have

η R

4 Theoretical Guarantees for AR Diffusion196

In this section, we provide the theoretical results of the AR diffusion models. We first analyze in197

general the inference and training performance of AR diffusion. We demonstrate that, compared198

with typical DDPM, its gradient complexity increases by a factor of K (the number of data patches)199

during the inference time, but it is practical for large-scale applications. We then theoretically200

analyze AR diffusion’s property for capturing conditional dependence structures within data, formally201

demonstrating its advantages in learning feature dependencies compared to typical diffusion models.202

4.1 Inference performances of AR diffusion203

Building upon Lemma 4.3, we deliver the theoretical result on the sampling error of AR diffusion204

model on the joint distributions over all the random variables x[1:K].205

Theorem 4.1. Suppose Assumption [A1]-[A3] hold, and ω →
(
0, ln

√
(4L)→2 + 1 + (4L)→1

]
, if206

Alg. 1 chooses the time sequence {εr}R→1
r=0 as207

εr =






ε when 0 → r < M

ε/(1 + ε)r→M+1 when M → r < N

ε when N → r → R

where208

M =
T ↑ 1

ε
, N = M +

2 ln(1/ω)

ε
, and R = N +

ω

ε
,

then, the generated samples [x̂1, x̂2, . . . , x̂K ] follows the distribution p̂↑, which satisfies209

KL
(
p↑
∥∥p̂↑

)
↭ 2e→2T

L · (m0 + d) + (L2
Rε

2 + Tε) · d+ εm0 + εKR · ϑ2score.
Remark 4.2. To achieve the KL convergence, e.g., KL

(
p↑
∥∥p̂↑

)
→ ϑ

2 for the generated data, we only210

require the hyper-parameters to satisfy T = !̃(1),211

ε = !̃(L→2
d
→1

ϑ
→2) and ϑscore = Õ(K→1/2

ϑ).

Under these conditions, the total gradient complexity of the inference process will be at an212

Õ(KL
2
dϑ

→2) level. Compared with typical DDPM (corresponding to the special case K = 1213

in our setting), this complexity will have an additional factor of K, which means AR diffusion usually214

requires more inference steps to achieve the same generation quality and matches people’s general215

perception in empirical studies. From the training perspective, the average dimension of the estimated216

score in AR diffusion is only 1/K of that in typical diffusion.217
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The above means given the data patch x[1:k] that is being conditioned upon, we can always choose a224

small enough step size ε and a large enough convergence time T , so that the conditional distribution225

converges to any desired accuracy ϑ: KL
(
p↑,k+1|[1:k](·|x[1:k])

∥∥p̂↑,k+1|[1:k](·|x[1:k])
)
→ ϑ.226

On the other hand, if one only performs score matching over the joint distributions qT→t(x[1:K]),227

the convergence of the diffusion model is in terms of KL
(
p↑(x[1:K])

∥∥p̂↑(x[1:K])
)
. Lemma below228

demonstrates even for the Gaussian target, even if the KL divergence between joint distributions are229

arbitrarily small, the KL divergence between the conditional distributions can remain arbitrarily large.230

7

Truncation error Accumulated 
discretization error

Accumulated score 
estimation error

• Discretization error is accumulated in dimension: 


• The score estimation error is accumulated with an additional  factor (but  is different).

d = ∑K
i=1 di

K ϵscore
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Autoregressive Diffusion Model: General Theory
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Accumulated discretization error
• The discretization error can be improved using RTK-ULD or RTK-MALA (need stronger 

assumptions.)


• For DDPM, the total complexity will be .


• For RTK-ULD, the total complexity will be .

Õ(Kdϵ−2)
Õ(Kd1/2ϵ−1)

Autoregressive diffusion model requires longer inference time!



Autoregressive Diffusion Model: Conditional Dependency

Lemma: Under the aforementioned assumptions and apply appropriate learning rate for diffusion 
sampling, considering DDPM solver, we have
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appropriate choice of step size. 
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reflected in the generated data 

xi xj

x = [x1, …, xK]
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Single Diffusion Model: Possible Failure

• Single diffusion model can well capture the joint distribution, while may be failed in 
learning the conditional dependency between different parts in the image.


• A simple case is , 


• The joint distribution  has very large condition number (covariance matrix is kind of ill-
conditioned).


• The distribution  and  has small condition numbers.

x = [x1, x2] x1 ∼ N(0,1), x2 = x1 + N(0,ϵ2)

x

p(x1) p(x2 |x1)

(a) Training Data (b) Inference: AR Diffusion (c) Inference: DDPM (d) Training: Diffusion Loss
Figure 2: Comparison of AR Diffusion and DDPM on Task 1. Figure 2(a) validates the evaluation
method using training data as a baseline. Figure 2(b) and Figure 2(c) show that AR Diffusion better
captures inter-feature dependencies during inference, achieving a higher R2. Figure 2(d) shows that
AR diffusion consistently has lower loss with ω := LDDPM → LAR > 0 for most steps.

Lemma 4.4. Consider random vectors y ↑ Rdk+1 and x ↑ Rd1+d2+···+dk . For any error231

threshold ε ↑ (0, 1/2] and for any M ↑ R, there exists a pair of Gaussian probability densities232

(p→(y,x), p̂→(y,x)), such that KL
(
p→(y,x)

∥∥p̂→(y,x)
)

↓ ε, while KL
(
p→(y|x)

∥∥p̂→(y|x)
)

>233

M
2 · ↔x(1:dk+1)↔2.234

Detailed proof of Lemma 4.4 is provided in Appendix C. By constructing a special case where both235

the target and sampling distributions are Gaussian, Lemma 4.4 demonstrates that for vanilla diffusion236

models, which aim to learn the joint distribution, even when the KL divergence between the target and237

sampling joint distributions is constrained, the KL divergence between the corresponding conditional238

distributions remains lower-bounded by a constant-level value. This highlights the weakness of typical239

diffusion models in capturing dependency structures, especially in comparison to AR diffusion.240

5 Experiment241

In this section, we first construct data with predefined conditional dependencies to train AR diffusion242

and DDPM [13]. The advantage of AR model in capturing feature dependencies validates the243

conclusion in Section 4.2. We then examine the relationship between AR diffusion’s inference244

performance and training loss. The total training loss, aggregated using factor K from Section 4.1,245

completely aligns with inference performance, supporting the validity of Theorem 4.1.246
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Figure 1: Dependencies in Task 1 is the physical
rule of straight-line light propagation, where
a larger patch size (16) ensures correlated
features (sun and shadow) are sequentially
learned following AR raster scan order. In
Task 2, dependencies are based on constraints
between square lengths, but a smaller patch size
(8) disrupts these dependencies by segmenting
the squares across patches.

Synthetic Tasks. Following [12], Figure 1 shows247

two synthetic tasks with feature dependencies: (1)248

Task 1 abstracts light and shadow phenomena,249

with sun, flagpole, and shadow elements satisfying250

the geometric constraint l1
h1

= l2
h2

; (2) Task 2251

requires two squares satisfy the constraint l2 =252

1.5l1. More details of synthetic tasks are in E.253

Setup and Evaluation. Based on synthetic tasks,254

we train AR Diffusion and DDPM from scratch255

with comparable parameters. Using the feature256

extraction method in [12], we extract geometric257

features from generated images and evaluate258

inference performance by checking dependecy259

satisfaction. Specifically, for AR Diffusion in260

Task 1, we control the patch size to 16 to261

ensure that sun features are always learned before262

shadow features, explicitly embedding feature263

dependencies into the learning order. In Task 2, a patch size of 8 splits dependent square parts264

across tokens, hindering feature learning. Further details are provided in Appendix E.265

Results.We summarize the experimental results from the training and inference stages.266

Inference Phase. Following [12], we first extract geometric features related to depedency from the267

training data and find that in both Task 1 and Task 2 (Figure 2(a) and Figure 3(a)), the extracted268
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Numerical Experiments

• Task 1: generating the samples that satisfy the physical rule of straight-line light 
propagation. 


• Patches with size (16*16) ensure correlated features (sun and shadow) are 
sequentially discovered via AR.
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Figure 2: Comparison of AR Diffusion and DDPM on Task 1. Figure 2(a) validates the evaluation
method using training data as a baseline. Figure 2(b) and Figure 2(c) show that AR Diffusion better
captures inter-feature dependencies during inference, achieving a higher R2. Figure 2(d) shows that
AR diffusion consistently has lower loss with ω := LDDPM → LAR > 0 for most steps.
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Figure 2: Comparison of AR Diffusion and DDPM on Task 1. Figure 2(a) validates the evaluation
method using training data as a baseline. Figure 2(b) and Figure 2(c) show that AR Diffusion better
captures inter-feature dependencies during inference, achieving a higher R2. Figure 2(d) shows that
AR diffusion consistently has lower loss with ω := LDDPM → LAR > 0 for most steps.
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Autoregressive Diffusion Model: Conditional Dependency

(a) Training Data (b) Inference: AR Diffusion (c) Inference: DDPM (d) Training: Diffusion Loss
Figure 2: Comparison of AR Diffusion and DDPM on Task 1. Figure 2(a) validates the evaluation
method using training data as a baseline. Figure 2(b) and Figure 2(c) show that AR Diffusion better
captures inter-feature dependencies during inference, achieving a higher R2. Figure 2(d) shows that
AR diffusion consistently has lower loss with ω := LDDPM → LAR > 0 for most steps.
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AR DM DM δ = Ldm − Lar

• When the dependency appear among different patches of the data, AR DM can better 
capture the inter-patch dependencies, and achieves lower training loss.


• This aligns with the theoretical results on conditional dependency.



Numerical Experiments

Task Training data

• Task 1: generating the samples that satisfy the constraints between the lengths of two 
square (32*32).


• Small patch size (8*8) disrupts these dependencies by segmenting the squares into 
patches.

(a) Training Data (b) Inference: AR Diffusion (c) Inference: DDPM (d) Training: Diffusion Loss
Figure 2: Comparison of AR Diffusion and DDPM on Task 1. Figure 2(a) validates the evaluation
method using training data as a baseline. Figure 2(b) and Figure 2(c) show that AR Diffusion better
captures inter-feature dependencies during inference, achieving a higher R2. Figure 2(d) shows that
AR diffusion consistently has lower loss with ω := LDDPM → LAR > 0 for most steps.

Lemma 4.4. Consider random vectors y ↑ Rdk+1 and x ↑ Rd1+d2+···+dk . For any error231

threshold ε ↑ (0, 1/2] and for any M ↑ R, there exists a pair of Gaussian probability densities232

(p→(y,x), p̂→(y,x)), such that KL
(
p→(y,x)

∥∥p̂→(y,x)
)

↓ ε, while KL
(
p→(y|x)

∥∥p̂→(y|x)
)

>233

M
2 · ↔x(1:dk+1)↔2.234

Detailed proof of Lemma 4.4 is provided in Appendix C. By constructing a special case where both235

the target and sampling distributions are Gaussian, Lemma 4.4 demonstrates that for vanilla diffusion236

models, which aim to learn the joint distribution, even when the KL divergence between the target and237

sampling joint distributions is constrained, the KL divergence between the corresponding conditional238

distributions remains lower-bounded by a constant-level value. This highlights the weakness of typical239

diffusion models in capturing dependency structures, especially in comparison to AR diffusion.240

5 Experiment241

In this section, we first construct data with predefined conditional dependencies to train AR diffusion242

and DDPM [13]. The advantage of AR model in capturing feature dependencies validates the243

conclusion in Section 4.2. We then examine the relationship between AR diffusion’s inference244

performance and training loss. The total training loss, aggregated using factor K from Section 4.1,245

completely aligns with inference performance, supporting the validity of Theorem 4.1.246

l2

l1
h1

h2

1
l1
h1

= l2
h2

Dependency

(a) Task 1

2 l2 = 1.5l1
Dependency

l2

l1

(b) Task 2
Figure 1: Dependencies in Task 1 is the physical
rule of straight-line light propagation, where
a larger patch size (16) ensures correlated
features (sun and shadow) are sequentially
learned following AR raster scan order. In
Task 2, dependencies are based on constraints
between square lengths, but a smaller patch size
(8) disrupts these dependencies by segmenting
the squares across patches.

Synthetic Tasks. Following [12], Figure 1 shows247

two synthetic tasks with feature dependencies: (1)248

Task 1 abstracts light and shadow phenomena,249

with sun, flagpole, and shadow elements satisfying250

the geometric constraint l1
h1

= l2
h2

; (2) Task 2251

requires two squares satisfy the constraint l2 =252

1.5l1. More details of synthetic tasks are in E.253

Setup and Evaluation. Based on synthetic tasks,254

we train AR Diffusion and DDPM from scratch255

with comparable parameters. Using the feature256

extraction method in [12], we extract geometric257

features from generated images and evaluate258

inference performance by checking dependecy259

satisfaction. Specifically, for AR Diffusion in260

Task 1, we control the patch size to 16 to261

ensure that sun features are always learned before262

shadow features, explicitly embedding feature263

dependencies into the learning order. In Task 2, a patch size of 8 splits dependent square parts264

across tokens, hindering feature learning. Further details are provided in Appendix E.265

Results.We summarize the experimental results from the training and inference stages.266

Inference Phase. Following [12], we first extract geometric features related to depedency from the267

training data and find that in both Task 1 and Task 2 (Figure 2(a) and Figure 3(a)), the extracted268
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(a) Training Data (b) Inference: AR Diffusion (c) Inference: DDPM (d) Training: Diffusion Loss

Figure 3: Comparison of AR Diffusion and DDPM on Task 2. Figure 3(a) validates the evaluation
method using training data as a baseline. Figure 3(b) and Figure 3(c) show that AR Diffusion worse
captures inter-feature dependencies during inference, achieving a lower R2. Figure 3(d) shows that
AR diffusion consistently has higher loss with ω := LDDPM → LAR ↑ 0 for most steps.

features nearly perfectly satisfy the predefined dependencies, with high R
2 and curves that almost269

exactly overlap with the ground-truth lines. In contrast, Figure 2(b), Figure 2(c), Figure 3(b), and270

Figure 3(c) show that the some samples generated by AR Diffusion and DDPM deviate from the271

predefined rules, reflected by lower R2 and noticeable differences from the ground-truth curves.272

However, compared to DDPM, AR Diffusion better captures feature dependencies in Task 1 with273

smaller R2 and better estimation line, while DDPM performs better in Task 2. This highlights that274

with appropriate patch partitioning, AR Diffusion can better learn feature dependencies than DDPM.275

To further verify that AR Diffusion’s advantage in Task 1 arises from its next-token prediction276

paradigm emphasizing feature dependencies, we conduct additional ablation studies in Appendix E.3.277

Specifically, we modify only the learning order: instead of the raster scan (learning sun features278

before shadow features), we adopt a parallel order where sun and shadow regions are learned279

simultaneously, disrupting feature dependency learning. This change significantly degrades AR280

diffusion’s performance, with R
2 dropping to 0.68.281

Training Phase. Figure 2(d) and Figure 3(d) show training loss differences between AR diffusion282

and DDPM, where ω := LDDPM → LAR. AR Diffusion loss is aggregated token-wise using the283

correction factor K derived from Theorem 4.1 to obtain total loss LAR. For Task 1, AR Diffusion284

exhibits a lower training loss, aligning with better inference performance, while for Task 2, AR285

Diffusion shows higher training loss, corresponding to worse inference performance. This alignment286

between training and inference validates the effectiveness of correction factor K in Theorem 4.1.287

More Experiments. In addition, Appendix E.2 explores more real-world data and different model288

backbones. Specifically, we construct 2 ↓ 2 composite images by concatenating MNIST digits,289

where the four digits satisfy predefined feature dependencies, such as forming an arithmetic sequence290

(e.g., 1, 2, 3, 4). These experiments further support our finding that AR Diffusion better captures291

dependencies between non-independent features than DDPM.292

6 Conclusion and Limitation293

This work presents a novel theoretical and practical exploration of AR diffusion models. By294

formulating AR diffusion as a stage-wise auto-regressive structure, we show it can retain near-295

minimal assumptions on data distribution and score smoothness and converge in terms of the KL296

divergence for each conditional distribution, whereas vanilla diffusion models fail to preserve these297

conditional distributions even when the joint distribution converges.298

One limitation is that we only consider the SDE-based inference, while various ODE-based inference299

methods have been extensively studied in typical DDPM [16, 5, 17]. It will be intriguing to investigate300

whether the Fokker-Planck equivalence can be adapted to auto-regressive settings and whether ODE-301

based inference can retain its convergence. Besides, the theoretical properties of some high-order302

ODE or SDE-based inference algorithms [35, 22] are not covered in our paper, which can be left as303

an interesting future direction. Moreover, we directly make assumptions on the quality of the learned304

score function rather than proving them. Note that various works [11, 4, 10] have investigated the305

optimization, generalization properties and explore how the features are learned via denoising score306

matching, which can be potentially integrated with our results.307
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(a) Training Data (b) Inference: AR Diffusion (c) Inference: DDPM (d) Training: Diffusion Loss

Figure 3: Comparison of AR Diffusion and DDPM on Task 2. Figure 3(a) validates the evaluation
method using training data as a baseline. Figure 3(b) and Figure 3(c) show that AR Diffusion worse
captures inter-feature dependencies during inference, achieving a lower R2. Figure 3(d) shows that
AR diffusion consistently has higher loss with ω := LDDPM → LAR ↑ 0 for most steps.

features nearly perfectly satisfy the predefined dependencies, with high R
2 and curves that almost269

exactly overlap with the ground-truth lines. In contrast, Figure 2(b), Figure 2(c), Figure 3(b), and270

Figure 3(c) show that the some samples generated by AR Diffusion and DDPM deviate from the271

predefined rules, reflected by lower R2 and noticeable differences from the ground-truth curves.272

However, compared to DDPM, AR Diffusion better captures feature dependencies in Task 1 with273

smaller R2 and better estimation line, while DDPM performs better in Task 2. This highlights that274

with appropriate patch partitioning, AR Diffusion can better learn feature dependencies than DDPM.275

To further verify that AR Diffusion’s advantage in Task 1 arises from its next-token prediction276

paradigm emphasizing feature dependencies, we conduct additional ablation studies in Appendix E.3.277

Specifically, we modify only the learning order: instead of the raster scan (learning sun features278

before shadow features), we adopt a parallel order where sun and shadow regions are learned279

simultaneously, disrupting feature dependency learning. This change significantly degrades AR280

diffusion’s performance, with R
2 dropping to 0.68.281

Training Phase. Figure 2(d) and Figure 3(d) show training loss differences between AR diffusion282

and DDPM, where ω := LDDPM → LAR. AR Diffusion loss is aggregated token-wise using the283

correction factor K derived from Theorem 4.1 to obtain total loss LAR. For Task 1, AR Diffusion284

exhibits a lower training loss, aligning with better inference performance, while for Task 2, AR285

Diffusion shows higher training loss, corresponding to worse inference performance. This alignment286

between training and inference validates the effectiveness of correction factor K in Theorem 4.1.287

More Experiments. In addition, Appendix E.2 explores more real-world data and different model288

backbones. Specifically, we construct 2 ↓ 2 composite images by concatenating MNIST digits,289

where the four digits satisfy predefined feature dependencies, such as forming an arithmetic sequence290

(e.g., 1, 2, 3, 4). These experiments further support our finding that AR Diffusion better captures291

dependencies between non-independent features than DDPM.292

6 Conclusion and Limitation293

This work presents a novel theoretical and practical exploration of AR diffusion models. By294

formulating AR diffusion as a stage-wise auto-regressive structure, we show it can retain near-295

minimal assumptions on data distribution and score smoothness and converge in terms of the KL296

divergence for each conditional distribution, whereas vanilla diffusion models fail to preserve these297

conditional distributions even when the joint distribution converges.298

One limitation is that we only consider the SDE-based inference, while various ODE-based inference299

methods have been extensively studied in typical DDPM [16, 5, 17]. It will be intriguing to investigate300

whether the Fokker-Planck equivalence can be adapted to auto-regressive settings and whether ODE-301

based inference can retain its convergence. Besides, the theoretical properties of some high-order302

ODE or SDE-based inference algorithms [35, 22] are not covered in our paper, which can be left as303

an interesting future direction. Moreover, we directly make assumptions on the quality of the learned304

score function rather than proving them. Note that various works [11, 4, 10] have investigated the305

optimization, generalization properties and explore how the features are learned via denoising score306

matching, which can be potentially integrated with our results.307

9

AR DM DM δ = Ldm − Lar

• When the dependency does not appear among different patches of the data, AR DM can 
not capture the inter-patch dependencies, and achieves substantially larger training loss.


• This aligns with the theoretical results in general setting.



Takeaway

‣ AR diffusion model and Standard diffusion model


‣ We developed an RTK framework, which can be used to develop a family of 
diffusion inference algorithms.


‣ We developed the sampling theory for AR diffusion model, which shows that:


‣ AR diffusion model behaves worse than standard DM, in general settings.


‣ AR diffusion model can better capture inter-patch dependencies than 
standard DM.


