
Hallucinations are inevitable but
can be made statistically

negligible.
The “innate” inevitability of hallucinations cannot explain

practical LLM issues.
SUZUKI, Atsushi



Self-introduction



Prof SUZUKI, Atsushi (Math, HKU, 2025-)

• Received bachelor (2015), master (2017), and PhD (2020) degrees
from the University of Tokyo.

• Worked for the University of Greenwich (2020-2022) and King’s
College London (2022-2024) as an Assistant Professor (UK
Lecturer).

• Interested in theoretical behaviors on machine learning
‣ Including those using differential geometry.

SUZUKI, Atsushi Hallucinations are statistically negligible. 2 / 64



1. Introduction:
Hallucinations are
inevitable



1.1 Key Problem: LLM Hallucinations

Today’s talk introduces the following arxiv paper:

Atsushi Suzuki, Yulan He, Feng Tian, Zhongyuan Wang “Hallucinations
are inevitable but can be made statistically negligible. The "innate"
inevitability of hallucinations cannot explain practical LLM issues.” (To
be updated)
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1.1 Key Problem: LLM Hallucinations

Hallucinations: phenomena of a large language model (LLM)‘s
generating nonfactual, nonsensical, or unfaithful content.

• A significant challenge for practical LLM deployment (Huang, Yu, Ma,
Zhong, Feng, Wang, Chen, Peng, Feng, Qin, others 2023; Ji, Lee,
Frieske, Yu, Su, Xu, Ishii, Bang, Madotto, Fung 2023).

• Many empirical mitigation methods exist.
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1.1 Key Problem: LLM Hallucinations

Figure 1: A hallucination example (HKU DeepSeek v3):
We have four lifts to the A1 exit, HKU station.
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1.1 Key Problem: LLM Hallucinations

Recent theoretical work claims ((Xu, Jain, Kankanhalli 2024; Banerjee,
Agarwal, Singla 2024)) any language model (LM) inevitably produces
hallucinations on an infinite set of inputs (in the worst case).

• Regardless of training data, model architecture, or algorithms
(an “innate issue” of LLMs).
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1.1 Key Problem: LLM Hallucinations

Recent theoretical work claims ((Xu, Jain, Kankanhalli 2024; Banerjee,
Agarwal, Singla 2024)) any language model (LM) inevitably produces
hallucinations on an infinite set of inputs (in the worst case).

• Regardless of training data, model architecture, or algorithms
(an “innate issue” of LLMs).

• Based on computability theory (diagonal arguments, halting problem).
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1.2 Impact of “inevitability of hallucinations”

Figure 2: A Nature article written by a journalist (Jones 2025). They
construct discussions presuming the inevitability of hallucinations.
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1.2 Impact of “inevitability of hallucinations”

Figure 3: A Wikipedia article (Wikipedia 2025). They also construct
discussions presuming the inevitability of hallucinations.
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2. Our work’s claim:
Hallucinations can be
made statistically
negligible.



2.1 Our research’s claim

The inevitability of infinite hallucinations sounds pessimistic: Is the
proof of infinite hallucinations fatal for LLMs’ future?
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2.1 Our research’s claim

The inevitability of infinite hallucinations sounds pessimistic: Is the
proof of infinite hallucinations fatal for LLMs’ future?

We claim “NO”: “Innate” inevitability results from computability theory
(diagonal arguments) cannot explain practical LLM issues.
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2.2 Our research’s claim (more specific)

We present a contrastive, positive theoretical result from a
probabilistic perspective.
• Hallucinations can be made statistically negligible (arbitrarily low

probability).
• This requires sufficient quality/quantity of training data and

appropriate algorithms.
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2.3 Contributions

We show that in a discrete setting (reflecting NLP):

• Hallucinations can be made statistically negligible with:
‣ Appropriate algorithm.
‣ Sufficient quality and quantity of training data.
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2.3 Contributions

We show that in a discrete setting (reflecting NLP):

• Hallucinations can be made statistically negligible with:
‣ Appropriate algorithm.
‣ Sufficient quality and quantity of training data.

• No assumptions on:
‣ Grammatical/semantic structure of natural language.
‣ Nature of the ground truth mapping (can be non-computable).
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2.3 Contributions

We resolve the paradox between results from the two theories:
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2.3 Contributions

We resolve the paradox between results from the two theories:

• The negative result from the computability theory: Hallucinations on
infinite inputs are inevitable.

• The positive result from the probability theory: Probability of
hallucination can be near zero.

SUZUKI, Atsushi Hallucinations are statistically negligible. 14 / 64



2.3 Contributions

We resolve the paradox between results from the two theories:

• The negative result from the computability theory: Hallucinations on
infinite inputs are inevitable.

• The positive result from the probability theory: Probability of
hallucination can be near zero.

One technical contribution is to provide a theoretical framework
allowing both the theories simultaneously to be considered on.
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2.3 Contributions

We resolve the paradox between results from the two theories:

• The negative result from the computability theory: Hallucinations on
infinite inputs are inevitable.

• The positive result from the probability theory: Probability of
hallucination can be near zero.

One technical contribution is to provide a theoretical framework
allowing both the theories simultaneously to be considered on.

We also argue that statistical negligibility better reflects practical
considerations than inevitability.
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2.4 Implication of our study

Implication of our study:

If hallucinations are a practical issue, the cause is likely the dataset or
algorithm, not “innate” inevitability.
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2.4 Implication of our study

Implication of our study:

If hallucinations are a practical issue, the cause is likely the dataset or
algorithm, not “innate” inevitability.

We should simply continue improving the dataset and algorithm!
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2.5 Related Work

• Transformer universality (e.g., (Yun, Bhojanapalli, Rawat, Reddi,
Kumar 2020; Zaheer, Guruganesh, Dubey, Ainslie, Alberti, Ontanon,
Pham, Ravula, Wang, Yang, others 2020)):
‣ Continuous function approximation, different from our discrete

setting.
‣ Computability limits from (Xu, Jain, Kankanhalli 2024) stem from

the discrete setting.
‣ We need to construct a discrete setting to rebut those computability

limits.
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2.5 Related Work

Our technical Contribution: Providing an integrated framework for
discussing LMs using both computability and statistical learning theory.
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3. Preliminaries



3.1 String and Language Models

Definition 1 (String and Symbol Sets).  
• Σ: The set of input symbols (e.g., characters).
‣ E.g., in English: Σ = {‘𝙰’, ‘𝙱’, …, ‘𝚉’, ‘𝚊’, ‘𝚋’, …, ‘𝚣’, ‘.’, ‘,’, ‘!’, ‘?’, ‘ ’}

• String: A finite sequence of symbols.
• Σ𝑛: The set of strings of length 𝑛.
• Σ∗ = ∪∞

𝑛=0 Σ𝑛: The set of all (finite-length) strings.
‣ A countably infinite set.

• Example: “𝚕𝚊𝚗𝚐𝚞𝚊𝚐𝚎 𝚖𝚘𝚍𝚎𝚕” ∈ Σ14 ⊂ Σ∗
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3.1 String and Language Models

Definition 2 (Language Model (LM)).  
• A (deterministic) computable map ℎ : Σ∗ → Σ∗ is called a LM.
‣ Note: ℎ is computable iff there exists a Turing machine that halts

with ℎ(𝑠) for every input 𝑠.
• ℋ: Set of all LMs.

Remark 3.  All LLMs are LMs. We do NOT distinguish LMs with
LLMs in this material. We focus on deterministic LMs for simplicity,
aligning with (Xu, Jain, Kankanhalli 2024).
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3.2 Countability of the set of LMs

Computable, so countable!

Remark 4 (ℋ is countable!).   The set ℋ of all LMs (computable
maps from Σ∗ to Σ∗) is a countably infinite set (since it can be
identified with a subset (all possible source codes) of Σ∗.)
• Note: a set 𝒜 is called a countably infinite set if there exists a

bijective map 𝜑 : 𝒜 → ℕ, where ℕ is the set of natural numbers
(nonnegative integers).
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3.2 Countability of the set of LMs

Examples of countably infinite sets:
• ℕ: the set of natural numbers
• ℤ: the set of integers
• ℚ: the set of rational numbers
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3.2 Countability of the set of LMs

Examples of countably infinite sets:
• ℕ: the set of natural numbers
• ℤ: the set of integers
• ℚ: the set of rational numbers

Examples of uncountably infinite sets:
• ℝ: the set of real numbers
• 2ℕ: the set of all subsets of ℕ (= the set of all {0, 1}-valued infinite

sequences.)
• ℕℕ: the set of all ℕ-valued functions on ℕ (the set of ℕ-valued infinite

sequences).

SUZUKI, Atsushi Hallucinations are statistically negligible. 22 / 64



3.3 Why does the countability matter?

Example of the countability causes limitations of computers:
The set of computable¹ real numbers is countably infinite.

¹Note: A real number 𝑟 is computable if there exists an algorithm (e.g., a Turing
machine) that, given an integer 𝑛 as input, outputs a rational number 𝑞𝑛 such that
|𝑟 − 𝑞𝑛| < 2−𝑛. In other words, a real number 𝑟 is computable if there exists an
algorithm that can compute a rational approximation of 𝑟 to any desired precision.
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3.3 Why does the countability matter?

Example of the countability causes limitations of computers:
The set of computable¹ real numbers is countably infinite.

In other words, real numbers are non-computable almost
everywhere on the real number line (w.r.t. the Lebesgue measure).
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3.3 Why does the countability matter?

Example of the countability causes limitations of computers:
The set of computable¹ real numbers is countably infinite.

In other words, real numbers are non-computable almost
everywhere on the real number line (w.r.t. the Lebesgue measure).

Similar discussions can prove the inevitability of hallucinations.

¹Note: A real number 𝑟 is computable if there exists an algorithm (e.g., a Turing
machine) that, given an integer 𝑛 as input, outputs a rational number 𝑞𝑛 such that
|𝑟 − 𝑞𝑛| < 2−𝑛. In other words, a real number 𝑟 is computable if there exists an
algorithm that can compute a rational approximation of 𝑟 to any desired precision.
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3.4 Definition of hallucinations

Definition 5 (Acceptable Outputs and Hallucinations).  
• Acceptable output set map: 𝐹0 : Σ∗ → 2Σ∗ .
‣ For input 𝑠, 𝐹0(𝑠) is the set of acceptable outputs.
‣ Assumed non-vacuous: 𝐹0(𝑠) ≠ {} for all 𝑠. (Ground truth

always provides at least one valid response).
• An LM ℎ hallucinates on input 𝑠 w.r.t. 𝐹0 if ℎ(𝑠) ∉ 𝐹0(𝑠).
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3.4 Definition of hallucinations

Remark 6.  
• We fix 𝐹0 but never fully know it in real data settings, including

natural language processing. Worst-case analysis is key.
• 𝐹0 can be non-computable.
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3.5 Section 3. Wrap up

We have seen that the ground truth 𝐹0 is unknown and the set ℋ of all
LMs is countable.

Next: Why does the countability of the set ℋ of all LMs matters?
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4. Innate Computability
Limitation of LMs



4.1 The inevitability of hallucinations: observation

Observation: Let’s consider the worst case w.r.t. 𝐹0.

Suppose only one output is acceptable for each input 𝑠 (|𝐹0(𝑠)| = 1).

The set of all such possible acceptable maps is {𝑓 : Σ∗ → Σ∗}, which is
an uncountably infinite set!
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4.1 The inevitability of hallucinations: observation

Observation: Let’s consider the worst case w.r.t. 𝐹0.

Suppose only one output is acceptable for each input 𝑠 (|𝐹0(𝑠)| = 1).

The set of all such possible acceptable maps is {𝑓 : Σ∗ → Σ∗}, which is
an uncountably infinite set!

Obviously, the countably infinite set ℋ ⊂ {𝑓 : Σ∗ → Σ∗} cannot cover
{𝑓 : Σ∗ → Σ∗} but its proper subset. Hence, if we consider the worst
case as 𝐹0, no LM can avoid hallucinations.

Moreover, we can state a stronger fact: No LM can avoid infinite
hallucinations.
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4.2 The inevitability of infinite hallucinations

Theorem 7 (Modified from Theorems 2 & 3 in (Xu, Jain,
Kankanhalli 2024)).   There exists an acceptable map 𝐹0 : Σ∗ → 2Σ∗

such that:
• |𝐹0(𝑠)| > 0 for every 𝑠 ∈ Σ∗ (non-vacuous), AND
• For any ℎ ∈ ℋ, ℎ hallucinates on infinitely many inputs, i.e.,

{𝑠 ∈ Σ∗ | ℎ(𝑠) ∉ 𝐹0(𝑠)}

is an infinite set.
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4.3 Diagonal arguments to prove infinite hallucinations

Proof: Construct the worst 𝐹0 by diagonal arguments.
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4.3 Diagonal arguments to prove infinite hallucinations

Proof: We can cover Σ∗ by a sequence 𝑠0, 𝑠1, … since it is countable.

Test inputs
𝑠0 𝑠1 𝑠2 ⋯
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4.3 Diagonal arguments to prove infinite hallucinations

Proof: We can cover ℋ by a sequence ℎ0, ℎ1, … since it is countable.

Test inputs
𝑠0 𝑠1 𝑠2 ⋯

ℎ0

ℎ1

ℎ2LM
s

⋮
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4.3 Diagonal arguments to prove infinite hallucinations

Proof: Let’s start constructing 𝐹0!

Test inputs
𝑠0 𝑠1 𝑠2 ⋯

ℎ0

ℎ1

ℎ2LM
s

⋮
𝐹0(𝑠𝑗) ⊂
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4.3 Diagonal arguments to prove infinite hallucinations

Proof: As 𝐹0(𝑠0), choose a subset of {ℎ0(𝑠0)}
C ≔ Σ∗ ∖ {ℎ0(𝑠0)}.

Test inputs
𝑠0 𝑠1 𝑠2 ⋯

ℎ0 ℎ0(𝑠0)
ℎ1 ℎ1(𝑠0)
ℎ2 ℎ2(𝑠0)LM

s

⋮ ⋮
𝐹0(𝑠𝑗) ⊂
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4.3 Diagonal arguments to prove infinite hallucinations
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Test inputs
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4.3 Diagonal arguments to prove infinite hallucinations

Proof: As 𝐹0(𝑠1), choose a subset of {ℎ𝑗(𝑠𝑗) | 𝑗 ≤ 1}C.

Test inputs
𝑠0 𝑠1 𝑠2 ⋯

ℎ0 ℎ0(𝑠0) ℎ0(𝑠1)
ℎ1 ℎ1(𝑠0) ℎ1(𝑠1)
ℎ2 ℎ2(𝑠0) ℎ2(𝑠1)LM

s

⋮ ⋮ ⋮
𝐹0(𝑠𝑗) ⊂ {ℎ0(𝑠0)}

C
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4.3 Diagonal arguments to prove infinite hallucinations

Proof: As 𝐹0(𝑠1), choose a subset of {ℎ𝑗(𝑠𝑗) | 𝑗 ≤ 1}C.

Test inputs
𝑠0 𝑠1 𝑠2 ⋯

ℎ0 ℎ0(𝑠0) ℎ0(𝑠1)
ℎ1 ℎ1(𝑠0) ℎ1(𝑠1)
ℎ2 ℎ2(𝑠0) ℎ2(𝑠1)LM

s

⋮ ⋮ ⋮
𝐹0(𝑠𝑗) ⊂ {ℎ0(𝑠0)}

C {ℎ𝑗(𝑠1) | 𝑗 ≤ 1}C
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4.3 Diagonal arguments to prove infinite hallucinations

Proof: As 𝐹0(𝑠2), choose a subset of {ℎ𝑗(𝑠𝑗) | 𝑗 ≤ 2}C.

Test inputs
𝑠0 𝑠1 𝑠2 ⋯

ℎ0 ℎ0(𝑠0) ℎ0(𝑠1) ℎ0(𝑠2)
ℎ1 ℎ1(𝑠0) ℎ1(𝑠1) ℎ1(𝑠2)
ℎ2 ℎ2(𝑠0) ℎ2(𝑠1) ℎ2(𝑠2)LM

s

⋮ ⋮ ⋮ ⋮
𝐹0(𝑠𝑗) ⊂ {ℎ0(𝑠0)}

C {ℎ𝑗(𝑠1) | 𝑗 ≤ 1}C
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4.3 Diagonal arguments to prove infinite hallucinations

Proof: As 𝐹0(𝑠2), choose a subset of {ℎ𝑗(𝑠𝑗) | 𝑗 ≤ 2}C.

Test inputs
𝑠0 𝑠1 𝑠2 ⋯

ℎ0 ℎ0(𝑠0) ℎ0(𝑠1) ℎ0(𝑠2)
ℎ1 ℎ1(𝑠0) ℎ1(𝑠1) ℎ1(𝑠2)
ℎ2 ℎ2(𝑠0) ℎ2(𝑠1) ℎ2(𝑠2)LM

s

⋮ ⋮ ⋮ ⋮
𝐹0(𝑠𝑗) ⊂ {ℎ0(𝑠0)}

C {ℎ𝑗(𝑠1) | 𝑗 ≤ 1}C {ℎ𝑗(𝑠2) | 𝑗 ≤ 2}C
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4.3 Diagonal arguments to prove infinite hallucinations

Proof: As a result, ℎ𝑗 hallucinates on 𝑠𝑖 for all 𝑖 = 𝑗, 𝑗 + 1, ….

Test inputs
𝑠0 𝑠1 𝑠2 ⋯

ℎ0 ℎ0(𝑠0) ℎ0(𝑠1) ℎ0(𝑠2) ⋯
ℎ1 ℎ1(𝑠0) ℎ1(𝑠1) ℎ1(𝑠2) ⋯
ℎ2 ℎ2(𝑠0) ℎ2(𝑠1) ℎ2(𝑠2) ⋯LM

s

⋮ ⋮ ⋮ ⋮ ⋱
𝐹0(𝑠𝑗) ⊂ {ℎ0(𝑠0)}

C {ℎ𝑗(𝑠1) | 𝑗 ≤ 1}C {ℎ𝑗(𝑠2) | 𝑗 ≤ 2}C ⋯
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4.3 Diagonal arguments to prove infinite hallucinations

Remark 8.   The proof used the countability of ℋ when we
constructed the rows of the table.

If we had had uncountably infinite functions, the previous proof
would have shown only that hallucinations are caused by a countably
finite subset of the uncountably infinite function set.
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4.4 Section 4. Wrap up

We have seen that infinite hallucinations are inevitable in the worst-
case scenario.

Next: How do the hallucinations behave from probability-theory
viewpoints?
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5. Hallucinations Can Be
Made Statistically
Negligible



5.1 Let’s clarify the goal

The computability-based discussion claims that infinite hallucinations
are inevitable:
• Under the worst scenario w.r.t. the ground truth 𝐹0.
• For any training datasets and training and inference algorithms.

To rebut the above claim from a statistical viewpoint, we are to show
that hallucinations can be statistically negligible:
• Even under the worst scenario w.r.t. the ground truth 𝐹0 (and the input

distribution).
• For certain¹ training datasets and training and inference algorithms.

¹The negation of “for any” is “there exists”.
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5.1 Let’s clarify the goal

To wrap up:

• No assumptions should be made on the ground truth 𝐹0 (and the
input distribution).

• We can choose an appropriate training data property and training and
inference algorithms.
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5.2 Consider ideal properties of training data

Definition 9 (Training Data and LM Trainer).  
• Training data point: (𝑠, 𝑦) ∈ Σ∗ × Σ∗.
• Training data sequence (dataset): Finite sequence of training

data points, e.g., 𝑡 = ((𝑠1, 𝑦1), …, (𝑠𝑚, 𝑦𝑚)).
• Language Model Trainer (LMT): A map 𝔄 : (Σ∗ × Σ∗)∗ → ℋ.
‣ Takes a dataset, returns an LM.
‣ That is, an LMT 𝔄 trains a model using a dataset 𝑡, and the

resulting model is denoted by 𝔄(𝑡).
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5.2 Consider ideal properties of training data

Definition 10 (Qualified Random Training Data Sequence).
Given 𝐹0 (non-vacuous) and 𝜇 on Σ∗. A length-𝑚 sequence 𝑇 =
((𝑆1, 𝑌1), …, (𝑆𝑚, 𝑌𝑚)) is qualified if:
• Inputs 𝑆1, …, 𝑆𝑚 are i.i.d. from 𝜇.
• For each 𝑖, the distribution of 𝑌𝑖 depends only on 𝑆𝑖, and 𝑌𝑖 ∈

𝐹0(𝑆𝑖) with probability 1.

Remark 11.  This assumes high-quality training data (outputs are
correct examples).
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5.3 Formulate our goal from statistical viewpoints

Definition 12 (Hallucination Probability).   For a LM ℎ and a
probability measure 𝜇 on Σ∗:

HP𝜇(ℎ) ≔ Pr(ℎ(𝑆) ∉ 𝐹0(𝑆)),

where 𝑆 ∼ 𝜇. (This is the 0-1 risk).

We are interested in HP𝜇(𝔄(𝑡)), where 𝔄 is an LMT and 𝑡 is a training
data sequence.
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5.3 Formulate our goal from statistical viewpoints

Definition 13 (Statistical Negligibility of Hallucinations).  

(1) Hallucinations of LMT 𝔄 are (𝜀𝐻 , 𝜀𝑇 )-negligible on 𝜇 with length
𝑚 if: For any non-vacuous 𝐹0, any 𝑚 ≥ 𝑚, and any qualified 𝑇 :
HP𝜇(𝔄(𝑇 )) < 𝜀𝐻  with probability (over 𝑇 ) at least 1 − 𝜀𝑇 .

The above definition only considers one distribution, so we extend
the definition for a distribution set to consider the worst distribution.
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5.3 Formulate our goal from statistical viewpoints

(2) Let 𝒫 ⊂ Δ(Σ∗).
• Uniformly statistically negligible on 𝒫: if For any 𝜀H, 𝜀T ∈ (0, 1]

there exists a 𝑚 ∈ ℤ≥0 such that for any 𝜇 ∈ 𝒫, hallucinations are
(𝜀H, 𝜀T)-negligible on 𝜇 with training sequence length 𝑚.

• Non-uniformly statistically negligible on 𝒫: For any 𝜀H, 𝜀T ∈
(0, 1] and any 𝜇 ∈ 𝒫, there exists a 𝑚 ∈ ℤ≥0 such that
hallucinations are (𝜀H, 𝜀T)-negligible on 𝜇 with training sequence
length 𝑚.
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5.3 Formulate our goal from statistical viewpoints

Remark 14.  

(1) If hallucinations are statistically negligible, it implies that we can
make the probability of hallucinations arbitrarily small with the help of
a qualified and sufficiently long training sequence.

(2) The difference between the uniform statistical negligibility and
non-uniform statistical negligibility of hallucinations only lies in
whether the training data length 𝑚 can depend on the probability
measure 𝜇 or not.
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5.3 Formulate our goal from statistical viewpoints

Specifically, if hallucinations are uniformly statistically negligible, we
know in advance a sufficient condition on the training data size 𝑚.

In contrast, if we only know hallucinations are non-uniformly
statistically negligible, we do not know how long a training data
sequence we need, but eventually we can achieve the aimed
hallucination probability (with high probability over training data
distribution) if we increase the data size.

By definition, if hallucinations are uniformly statistically negligible,
then non-uniformly statistically negligible.
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5.4 Additional definitions

The following is introduced just to state our main results about uniform
statistical negligibility of hallucinations.

Definition 15 (Input Length CDF and Bounded Measures).  
• CDFlen ♯𝜇(𝑛) ≔ Pr(len(𝑆) ≤ 𝑛) for 𝑆 ∼ 𝜇.
‣ CDF refers to the cumulative distribution function.

• Fix non-decreasing CDF : ℤ≥0 → [0, 1] with lim𝑛→∞ CDF(𝑛) = 1.
• 𝒫CDF ≔ {𝜇 | ∀𝑛, CDFlen ♯𝜇(𝑛) ≥ CDF(𝑛)}. (Set of measures whose

input length tends to be short, as per CDF).
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5.5 Main Result

Theorem 16 (Hallucinations can be made statistically
negligible).   There exists an LMT 𝔄 such that:

(1) For any valid CDF, hallucinations are uniformly statistically
negligible on 𝒫CDF.

(2) Hallucinations are non-uniformly statistically negligible on
Δ(Σ∗) (all measures).
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5.5 Main Result

Remark 17.  
• Sufficient data size 𝑚 for (1)
‣ Depends on desired 𝜀𝐻 , 𝜀𝑇  and input length CDF.
‣ Can be very large: 𝑚 ≈ 𝑂( |Σ|𝑛

𝜀′
𝐻

log( |Σ|𝑛
𝜀′

𝑇
)),

‣ where 𝑛 depends on CDF.
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5.6 Proof strategy of the main result

Proof idea: Use a “Rote Memorizer” LMT.

• Given training data ((𝑠1, 𝑦1), …, (𝑠𝑚, 𝑦𝑚)).
• Stores pairs in a dictionary 𝑑.
• For a new input 𝑠: if 𝑠 in 𝑑, return 𝑑[𝑠]; else return empty string.

We simply estimate how many data points are needed for the Rote
Memorizer to achieve the desired hallucination probability 𝜀H with high
probability (1 − 𝜀T) over the training data.
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5.6 Proof strategy of the main result

𝑛

𝑦

O

𝑦 = CDFlen♯𝜇(𝑛)
1
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5.6 Proof strategy of the main result

𝑛

𝑦

O

𝑦 = CDFlen♯𝜇(𝑛)
1

𝑛

Gap = 1 − 𝜀𝐻
2

We find input length 𝑛 such that Pr𝑆∼𝜇(len(𝑆) > 𝑛) < 𝜀H
2 .
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5.6 Proof strategy of the main result

𝑛

𝑦

O

𝑦 = CDFlen♯𝜇(𝑛)
1

𝑛

Gap = 1 − 𝜀𝐻
2

We find input length 𝑛 such that Pr𝑆∼𝜇(len(𝑆) > 𝑛) < 𝜀H
2 .

We find the sufficient data size 𝑚 to cover a string set 𝒜 such that

Pr𝑆∼𝜇(len(𝑆) ≤ 𝑛 ∧ 𝑆 ∉ 𝒜) < 𝜀H
2

.
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5.7 Section 5. Wrap up

We have seen that hallucinations can be made statistically negligible.

Next: Do the negative result from computability theory and the positive
result from statistics coexist?

If yes, which matters in practice?
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6. Paradox and Solution:
Inevitable vs. Statistically
Negligible



6.1 The Paradox: Inevitable vs. Negligible

• Theorem 7 (Computability): ANY LM hallucinates on INFINITE inputs.
• Theorem 16 (Probability): EXISTS an LMT such that HP𝜇(𝔄(𝑇 )) can

be ARBITRARILY SMALL.
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6.1 The Paradox: Inevitable vs. Negligible

• Theorem 7 (Computability): ANY LM hallucinates on INFINITE inputs.
• Theorem 16 (Probability): EXISTS an LMT such that HP𝜇(𝔄(𝑇 )) can

be ARBITRARILY SMALL.

These seem contradictory but mathematically coexist.
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6.2 Why do they coexist?

• Σ∗ (the set of all possible inputs) is infinite.
• An infinite subset of Σ∗ (where hallucinations occur) can have an

arbitrarily small probability measure.
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6.2 Why do they coexist?

• Σ∗ (the set of all possible inputs) is infinite.
• An infinite subset of Σ∗ (where hallucinations occur) can have an

arbitrarily small probability measure.

Example: an infinite set having an arbitrarily small probability:
• Integers 𝑘 ≥ 0 with 𝑃(𝑘) = (1

2)𝑘+1.
• The set ℤ≥𝑚 = {𝑚, 𝑚 + 1, …} is infinite for any 𝑚.
• 𝑃(ℤ≥𝑚) = ∑∞

𝑘=𝑚 (1
2)𝑘+1 = (1

2)𝑚. As 𝑚 → ∞, 𝑃(ℤ≥𝑚) → 0.
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6.2 Why do they coexist?

• Σ∗ (the set of all possible inputs) is infinite.
• An infinite subset of Σ∗ (where hallucinations occur) can have an

arbitrarily small probability measure.

Example: an infinite set having an arbitrarily small probability:
• Integers 𝑘 ≥ 0 with 𝑃(𝑘) = (1

2)𝑘+1.
• The set ℤ≥𝑚 = {𝑚, 𝑚 + 1, …} is infinite for any 𝑚.
• 𝑃(ℤ≥𝑚) = ∑∞

𝑘=𝑚 (1
2)𝑘+1 = (1

2)𝑚. As 𝑚 → ∞, 𝑃(ℤ≥𝑚) → 0.

Similarly, the infinite set of inputs causing hallucinations can have its
total probability shrink to zero as training data 𝑚 increases.
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6.3 Which Matters?: Infinite or Small Probability?

The answer ultimately depends on the domain, but information theory
offers a perspective.

Example: Shannon’s Source Coding Theorem:
• It states that 𝑚 i.i.d. random variables (entropy 𝐻) can be

compressed into ∼ 𝑚𝐻 bits by allocating short codes to the elements
in “typical set” 𝐴𝑚 and sacrificing the performance outside 𝐴𝑚.

• The size of the set of uncompressed sequences 𝒳𝑚 \ 𝐴𝑚 can be
very large.

• Yet, the “error” probability 𝛿 (the probability of a generated sequence
belonging to 𝒳𝑚 \ 𝐴𝑚) is considered negligible in practice.
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6.3 Which Matters?: Infinite or Small Probability?

Conclusion from Analogy:
• Although infinite hallucinations are inevitable (computability theory),

they can be practically negligible if their probability is sufficiently
small.

• This applies to domains where information theory’s “negligible error
probability” causes no practical issues.
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7. Conclusion



7.1 Conclusion

• Hallucinations can be made statistically negligible with:
‣ An appropriate algorithm (e.g., Rote Memorizer for theoretical

proof).
‣ Sufficient quality and quantity of training data.

• This holds even in worst-case scenarios for ground truth (𝐹0) and
input distribution (𝜇).
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7.1 Conclusion

• Hallucinations can be made statistically negligible with:
‣ An appropriate algorithm (e.g., Rote Memorizer for theoretical

proof).
‣ Sufficient quality and quantity of training data.

• This holds even in worst-case scenarios for ground truth (𝐹0) and
input distribution (𝜇).

• The “innate” inevitability of hallucinations (on infinite inputs, from
computability theory) does not necessarily translate to practical,
high-probability issues.
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7.1 Conclusion

Key Takeaway:
• If hallucinations are a persistent practical problem, the cause is more

likely:
1. Insufficient/poor-quality training data.
2. Suboptimal algorithms (including computational complexity limits).

but NOT an “innate” limitation from diagonal arguments.
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7.1 Conclusion

Key Takeaway:
• If hallucinations are a persistent practical problem, the cause is more

likely:
1. Insufficient/poor-quality training data.
2. Suboptimal algorithms (including computational complexity limits).

but NOT an “innate” limitation from diagonal arguments.

We should simply continue to improve the dataset and algorithm!
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8. Appendix



8.1 Sufficient data size is huge

• Uses Rote Memorizer (RM) LMT.
‣ Given training data ((𝑠1, 𝑦1), …, (𝑠𝑚, 𝑦𝑚)).
‣ Stores pairs in a dictionary 𝑑.
‣ For a new input 𝑠: if 𝑠 in 𝑑, return 𝑑[𝑠]; else return empty string.

• Sufficient data size 𝑚:
‣ Depends on desired 𝜀𝐻 , 𝜀𝑇  and input length CDF CDF.
‣ Can be very large: 𝑚 ≈ 𝑂( |Σ|𝑛

𝜀′
𝐻

∗ log( |Σ|𝑛
𝜀′

𝑇
)), where 𝑛 depends on

CDF.
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8.2 Optimality / Necessity of Assumptions

• Input length CDF lower bound (CDF) is necessary for uniform
statistical negligibility.
‣ Shown by a No-Free-Lunch type theorem. Without it, for any 𝑚,

there’s a “bad” 𝜇 where RM (and any LMT) fails.
• Huge data size (exponential in some 𝑛 derived from CDF}) is

necessary in the worst case.
‣ Shown by another No-Free-Lunch type theorem.
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8.2 Optimality / Necessity of Assumptions

Remark 18 (Implications of Huge Data Size Necessity).  
• Does not mean practical LLMs always need impractically vast

data.
• Suggests our worst-case analysis (no assumptions on language

structure) is too pessimistic for typical scenarios.
• Highlights need for assumptions reflecting natural language

properties to prove tighter bounds for practical algorithms.

That said, it would be difficult for human beings to find good
assumptions that hold for natural languages…
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