

Deep Learning Methods for Sampling

Jianrui Wu jrwu@connect.hku.hk RPg Student Journal Club Apr 25, 2025

The Problem

To Sample from... • $\pi(x) = \frac{\gamma(x)}{Z}, Z = \int \gamma(x) dx$

- $\gamma(x)$ is unnormalized; Z is intractable
- Called a Boltzmann distribution when $\gamma(x) = e^{-f(x)}$

Is It Useful?

Applications

- Bayesian inference
 - $\pi(\theta|x) \propto \pi(\theta)p(x|\theta)$
- Optimization problems
- Physics simulations

Monte Carlo (MC)

Markov chain Monte Carlo (MCMC)

Unadjusted Langevin Algorithm (ULA), variant of Metropolis-Hastings that uses gradient

• $x_{t+1} = x_t - \eta_t \nabla f(x_t) + \sqrt{2\eta_t} \varepsilon_t, \varepsilon_t \sim \mathcal{N}(0, I)$

- Annealed Importance Sampling (AIS), special case of Sequential Monte Carlo (SMC)
 - Forward kernel F_k invariant w.r.t. $\pi_k \propto \gamma_k = \pi_0^{1-\beta_k} \gamma^{\beta_k}$; backward kernel B_k inverts F_{k+1}
 - Sample from π_0 to π_k as the extended proposal, and then back to π_0 again as the extended target
 - $w(x_{0:K}) = \frac{\Gamma(x_{0:K})}{Q(x_{0:K})}$ is an unbiased estimator of Z

Variational Inference (VI)

- Approximating p with q by minimizing reverse KL
 - Equivalent to maximizing ELBO
- Often extended by introducing an auxiliary variable, z
 - $q(x,z) = q(x|z)q(z), D_{\mathrm{KL}}(q(x)||\pi(x)) \le D_{\mathrm{KL}}(q(x,z)||p(z|x)\pi(x)) = -\mathbb{E}_{q(x,z)} \left|\log \frac{p(z|x)\gamma(x)}{q(x,z)}\right| + \log Z$
 - Gaussian Mixture Models (GMM) commonly used for q(x, z)

Evaluation

Estimates of Normalizing Constant

Importance weight $w(x) = \frac{\gamma(x)}{q(x)}$ ELBO $\mathbb{E}_q [\log w]$, lower bound

Mode Collapse

- Reverse KL is zero-forcing
 - Distributions in the wild are often highly non-convex and multi-modal
 - Forward KL is not accessible in training
- Forward criteria for evaluation
 - Benchmark the methods on known, tractable distributions
 - $D_{\mathrm{KL}}(\pi \parallel q) = \mathbb{E}_{\pi}[\log w] \log Z$

Recent Developments

Combining MC and VI

- AIS's proposal & target paradigm
 - Replace backward/forward kernels with DL components
- VI's loss function, reverse KL

Recent Developments Monte Carlo Diffusion (MCD)

HKU Musketeers Foundation Institute of Data Science 香港大學同心基金數據科學研究院

Motivation

 AIS is suboptimal in terms of variance; yet the optimal B_k is not directly available

• $B_k^{\text{opt}}(x_k \mid x_{k+1}) = \frac{q_k(x_k)F_{k+1}(x_{k+1}\mid x_k)}{q_{k+1}(x_{k+1})}$

Method

- Choose F_k to be ULA's (not learnable)
 - ULA is just discretized diffusion
- Score matching applicable for B_k
- Minimize $D_{\mathrm{KL}}(\mathit{Q}||P_{artheta})$ w.r.t. artheta

Algorithm 1 Unadjusted Langevin AIS/MCD – red instructions for AIS and blue for MCD

Require: Unnormalized target $\gamma(x)$, initial state proposal $\pi_0(x)$, number steps K, stepsize δ , annealing schedule $\{\beta_k\}_{k=0}^K$, score model $s_{\theta}(k, x)$ Sample $x_0 \sim \pi_0(x_0)$ Set $\log w = -\log \pi_0(x_0)$ for k = 1 to K do Define $\log \gamma_k(\cdot) = \beta_k \log \gamma(\cdot) + (1 - \beta_k) \log \pi_0(\cdot)$ Define $F_k(x_k | x_{k-1}) = \mathcal{N}(x_k; x_{k-1} + \delta \nabla \log \gamma_k(x_{k-1}), 2\delta I)$ Sample $x_k \sim F_k(\cdot | x_{k-1})$ Define $B_{k-1}(x_{k-1} | x_k) = F_k(x_{k-1} | x_k)$ Define $B_{k-1}(x_{k-1} | x_k) = \mathcal{N}(x_{k-1}; x_k - \delta \nabla \log \gamma_k(x_k) + 2\delta s_{\theta}(k, x_k), 2\delta I)$ Set $\log w = \log w + \log B_{k-1}(x_{k-1} | x_k) - \log F_k(x_k | x_{k-1})$ end for Set $\log w = \log w + \log \gamma(x_K)$

$$X_0 \sim \pi_0 - dX_t = \nabla \log \pi_t(X_t) dt + \sqrt{2} dB_t - X_T \approx \pi$$

 $\bar{X}_T \approx \pi_0 \blacktriangleleft d\bar{X}_t = \left\{ -\nabla \log \pi_{T-t}(\bar{X}_t) + 2\nabla \log q_{T-t}(\bar{X}_t) \right\} dt + \sqrt{2} d\bar{B}_t - \cdots - \bar{X}_0 \sim \pi$

Sequential Controlled Langevin Diffusions (SCLD)

Motivation

- Model forward process with DL
- Btw: KL has high variance

Method

- Continuous time formulization
 - $w = \log \frac{d\mathbb{P}}{d\mathbb{Q}}$ computed with RND
 - Can be refined with MCMC any time
- Log-variance divergence as loss
 - $D^{\widetilde{\mathbb{P}}}_{\mathrm{LV}}(\mathbb{P},\mathbb{Q}) = \operatorname{Var}_{\widetilde{\mathbb{P}}}[w]$
 - Reference measure can use arbitrary control, allowing "off-policy training"

Algorithm 1 Sequential Controlled Langevin Diffusion (SCLD). \triangleright See Algorithm 3 for details. **Require:** Annealing path π , learned control u, time grid $0 = t_0 < \cdots < t_N = T$ 1: Initialize: $\overline{X}_0 := X_0^{(1:K)} \sim p_{\text{prior}}$ and $\overline{w}_0 := w_0^{(1:K)} = 1$ 2: for n = 1 to n = N do *Transport:* $\overline{X}_{[t_{n-1},t_n]} = \text{simulate}_{\text{SDE}}(\overline{X}_{t_{n-1}},u)$ 3: \triangleright See (6) and (19) Compute RNDs: $\overline{w}_{[t_{n-1},t_n]} = \frac{\mathrm{d}\overline{P}_{[t_{n-1},t_n]}}{\mathrm{d}\overline{P}_{[t_{n-1},t_n]}} \left(\overline{X}_{[t_{n-1},t_n]}\right)$ 4: \triangleright See (12) and (30) 5: Update weights: $\overline{w}_n = \overline{w}_{n-1}\overline{w}_{[t_{n-1},t_n]}$ \triangleright See (13) Resample: $\overline{X}_{t_n}, \overline{w}_n = \text{resample}(\overline{X}_{t_n}, \overline{w}_n)$ 6: ▷ See Algorithm 5 7: return Samples $\overline{X}_T := X_T^{(1:K)}$ approximately from p_{target}

> "control"; *u* is parameterized with NN $dX_t^u = u(X_t^u, t)dt + \sigma(t)\vec{d}W_t, \quad X_0^u \sim p_{\text{prior}}$ $dY_t^v = v(Y_t^v, t)dt + \sigma(t)\vec{d}W_t, \quad Y_T^v \sim p_{\text{target}}$ $p_{X^u} = p_{Y^v} = \pi$ $(u - \sigma^2 \nabla \log \pi)(Y_t^u, t) dt \text{ pins down unique } u^*$

Further Reading

Reviews

- Blessing et al., "Beyond ELBOs."
- He et al., "No Trick, No Treat."
- A lot more papers: <u>https://github.com/J-zin/Awesome-Diffuison-Flow-Samplers</u>

Not Covered Today

- GFlowNet: https://milayb.notion.site/The-GFlowNet-Tutorial-95434ef0e2d94c24aab90e69b30be9b3
- VAN: Wu, Wang, and Zhang, "Solving Statistical Mechanics Using Variational Autoregressive Networks."