

# Neural Networks Through the Lens of Network Science: Structure and Performance

Jiayu Weng

# Intro

- Large model, the number of parameters of the SOTA models often exceeding 10<sup>6</sup>
- high computational cost
  A large GPT model can use as much energy in a day as 30,000 U.S.
  homes
- How can we better understand those models? how to set hyperparameters, a way to predict the performance without much training, can we reduce the number of training parameters?

# Intro

# the network properties of biological neural networks (e.g. sparsity, scale-freeness)



PowerPoint courtesy of Prof. Carlo Vittorio Cannistraci

#### **Sparse training**

Mocanu, Decebal Constantin, et al. "Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science." Nature communications 9.1 (2018): 2383.

#### Measure the characteristics of ANNs

Kang, Chris, et al. "Structural network measures reveal the emergence of heavy-tailed degree distributions in lottery ticket multilayer perceptrons." Neural Networks (2025): 107308.

#### **Metric for model selection**

Jiang, Chunheng, et al. "Network properties determine neural network performance." *Nature Communications* 15.1 (2024)

# nature communications

Explore content ~ About the journal ~ Publish with us ~

<u>nature</u> > <u>nature communications</u> > <u>articles</u> > article

Article Open access Published: 19 June 2018

## Scalable training of artificial neural netwo adaptive sparse connectivity inspired by n science

综合性期刊TOP SCI升级版综合性期刊1区 IF 14.7 Decebal Constantin Mocanu <sup>図</sup>, Elena Mocanu,

Peter Stone, Phuong H. Nguyen, Madeleine Gibescu & Antonio Liotta

*Nature Communications* **9**, Article number: 2383 (2018) Cite this article

53k Accesses | 347 Citations | 74 Altmetric | Metrics

A procedure to replace fullyconnected layers with sparse layers

# Sparse evolutionary training (SET) method

replace FC with a Sparse Connected (SC) layer having a Erdős-Rényi topology given by ε and Eq.1;

$$p\left(W_{ij}^{k}\right) = \frac{\varepsilon\left(n^{k} + n^{k-1}\right)}{n^{k}n^{k-1}}$$

(Layer h<sub>k</sub> has n<sub>k</sub> neurons)

remove a fraction of the smallest positive weights and the largest negative weights add randomly new connections

 $sc^{k}$  {  $h^{k}$   $h^{k-1}$   $\rightarrow$ 





the selection and mutation phase of natural evolution

### (RBM) Restricted Boltzmann Machine



(Higher average log-probability means the model is more confident about the test data.)



### **Connectivity patterns for the visible neurons**



#### (MLP) Multi-layer Perceptrons



**HIGGS dataset:** SET-MLP: 78.47% accuracy with 90K params vs. 78.54% with  $3 \times$  more



9

### (CNN) Convolutional Neural Network



conv(32,(3,3))-dropout(0.3)-conv(32,(3,3))-pooling-conv(64,(3,3))-dropout(0.3)-conv(64,(3,3))pooling-conv(128,(3,3))-dropout(0.3)-conv(128,(3,3))-pooling)

# • 1 Sparse training

Mocanu, Decebal Constantin, et al. "Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science." Nature communications 9.1 (2018): 2383.

Full connections — they're not how brains work SET: Sparse Evolutionary Training algorithm ER random graph → Scale-free topology Quadratic reduction in parameters, with no decrease in accuracy



Neural Networks Volume 187, July 2025, 107308

Full Length Article

Structural network measures revea emergence of heavy-tailed degree distributions in lottery ticket multi perceptrons

计算机科学TOP SCI升级版计算机科学2区

Chris Kang <sup>a b</sup>  $\stackrel{\diamond}{\sim}$   $\boxtimes$  , Jasmine A. Moore <sup>a b c g</sup>, Samuel Robertson <sup>d</sup>, Matthias Wilms <sup>a g h j</sup>,

IF 6.0

Emma K. Towlson <sup>a e f g 1</sup>, Nils D. Forkert <sup>a b g i j 1</sup>

Show more 🗸

Evaluate the pruned neural network through network science measures (understand what properties is working)

### Lottery ticket hypothesis

Frankle, Jonathan, and Michael Carbin. "The lottery ticket hypothesis: Finding sparse, trainable neural networks." *arXiv preprint arXiv:1803.03635* (2018). (ICLR 2019 Best Paper)

Neural network pruning well-performing sparse subnetworks (winning tickets)

- Small subnetworks = same performance
- Found by pruning + resetting
- Good init weights are key
- Sparse nets = less compute





### **Illustration of MLP and network metrics**



### Performances of the LT MLPs trained on MNIST



the near-maximum  $\langle w \rangle$  values are attained at around the same iteration or prior to which the catastrophic LT MLP performances begin to decay.

### Layered MLP representation





### **Mutual Information**



$$I(X;Z) = \sum_{x \in X, z \in Z} p(x,z) \log \frac{p(x,z)}{p_X(x)p_Z(z)}.$$



# Measure the characteristics of ANNs

Kang, Chris, et al. "Structural network measures reveal the emergence of heavy-tailed degree distributions in lottery ticket multilayer perceptrons." Neural Networks (2025): 107308.

pruned subnetworks in over-parameterized MLPs evolve to form heterogeneous network structures that fit a heavy-tailed distribution

May guide network pruning the potential to investigate and improve the fidelity between ANNs and the human brain

# nature communications

Explore content Y <u>About the journal</u> Y Publish with us  $\checkmark$ 

<u>nature > nature communications > articles > article</u>

Article Open access Published: 08 July 2024

## **Network properties determine neu** performance

A model selection problem a metric (from network resilience study) to know how well the model works through a few training epochs

综合性期刊ITOP SCI升级版综合性期刊1区 IF 14.7 Chunheng Jiang

Tejaswini Pedapati, Pin-Yu Chen, Yizhou Sun & Jianxi Gao 🖾

*Nature Communications* **15**, Article number: 5718 (2024) Cite this article

15k Accesses 14 Altmetric Metrics

### **Problem: Model Selection**

| Model             | Size<br>(MB) | Top-1<br>Accuracy | Top-5<br>Accuracy | Parameters | Depth | Time (ms)<br>per<br>inference<br>step (CPU) | Time (ms)<br>per<br>inference<br>step (GPU) |
|-------------------|--------------|-------------------|-------------------|------------|-------|---------------------------------------------|---------------------------------------------|
| Xception          | 88           | 79.0%             | 94.5%             | 22.9M      | 81    | 109.4                                       | 8.1                                         |
| VGG16             | 528          | 71.3%             | 90.1%             | 138.4M     | 16    | 69.5                                        | 4.2                                         |
| VGG19             | 549          | 71.3%             | 90.0%             | 143.7M     | 19    | 84.8                                        | 4.4                                         |
| ResNet50          | 98           | 74.9%             | 92.1%             | 25.6M      | 107   | 58.2                                        | 4.6                                         |
| ResNet50V2        | 98           | 76.0%             | 93.0%             | 25.6M      | 103   | 45.6                                        | 4.4                                         |
| ResNet101         | 171          | 76.4%             | 92.8%             | 44.7M      | 209   | 89.6                                        | 5.2                                         |
| ResNet101V2       | 171          | 77.2%             | 93.8%             | 44.7M      | 205   | 72.7                                        | 5.4                                         |
| ResNet152         | 232          | 76.6%             | 93.1%             | 60.4M      | 311   | 127.4                                       | 6.5                                         |
| ResNet152V2       | 232          | 78.0%             | 94.2%             | 60.4M      | 307   | 107.5                                       | 6.6                                         |
| InceptionV3       | 92           | 77.9%             | 93.7%             | 23.9M      | 189   | 42.2                                        | 6.9                                         |
| InceptionResNetV2 | 215          | 80.3%             | 95.3%             | 55.9M      | 449   | 130.2                                       | 10.0                                        |
| MobileNet         | 16           | 70.4%             | 89.5%             | 4.3M       | 55    | 22.6                                        | 3.4                                         |
| MobileNetV2       | 14           | 71.3%             | 90.1%             | 3.5M       | 105   | 25.9                                        | 3.8                                         |
| DenseNet121       | 33           | 75.0%             | 92.3%             | 8.1M       | 242   | 77.1                                        | 5.4                                         |
| DenseNet169       | 57           | 76.2%             | 93.2%             | 14.3M      | 338   | 96.4                                        | 6.3                                         |
| DenseNet201       | 80           | 77.3%             | 93.6%             | 20.2M      | 402   | 127.2                                       | 6.7                                         |
| NASNetMobile      | 23           | 74.4%             | 91.9%             | 5.3M       | 389   | 27.0                                        | 6.7                                         |

- Given:
  - Dataset  $D = D_{ ext{train}} \cup D_{ ext{test}}$
  - Model set  $\{F_1, F_2, ..., F_m\}$
- Goal:
  - Use early training signals to pick the best model  $F^{*}$
  - $F^*$  is expected to perform best on  $D_{\text{test}}$  after full training (e.g. 500 epochs)



### NN Training is a Dynamical System





Dataset  $D = \{(X_i, Y_i)\}_{i=1}^N, X_i = (x_{i1}, x_{i2}, x_{i3}), Y_i = (y_{i1}, y_{i2}, y_{i3})$ 

**Forward Propagation**  $G_A : x \mapsto \hat{y} \mapsto C(y, \hat{y}; w)$ 

■ Back-propagation (stochastic gradient descent) SGD :  $w \leftarrow w - \alpha \nabla_w C$ 

**Co-evolution of**  $\{w_1, w_2, ...\}$  during training?

Synaptic Connections

A complex networked system over the parameters  $\{w_1, w_2, ...\}$  of  $G_A$ 





Degree  $\delta_i$   $x_{eff}$ 



Gao et al. (2016). Universal resilience patterns in complex networks. Nature.



## Our Approach: Identify Edge Dynamics ${\mathscr B}$

#### **Notations:**

$$\begin{split} \boldsymbol{\delta}^{(\ell)} &= [\partial C/\partial \boldsymbol{z}_1^{(\ell)}, \cdots, \partial C/\partial \boldsymbol{z}_{n_\ell}^{(\ell)}]^T \\ \boldsymbol{\sigma}_{\ell}' &= [\boldsymbol{\sigma}_{\ell}'(\boldsymbol{a}_1^{(\ell)}), \cdots, \boldsymbol{\sigma}_{\ell}'(\boldsymbol{a}_{n_\ell}^{(\ell)})]^T \end{split}$$

#### SGD:

$$\nabla_{W^{(\ell)}} = \Lambda(\sigma'_{\ell}) W^{(\ell+1)T} \Lambda(\sigma'_{\ell+1}) \delta^{(\ell+1)} z^{(\ell-1)T} = -F(W^{(\ell+1)})$$
  
Taylor expansion

**Edge Dynamics** *B*:

$$\dot{w}_i = f(w_i) + \sum_j P_{ij}g(w_i, w_j), \tag{8}$$

 $P^{(l,l+1)} = \partial^2 \mathcal{C} / \partial W^{(\ell)} \partial W^{(\ell+1)},$ 

Networked System ( $G_B, \mathscr{B}$ )  $\longrightarrow$  can  $\beta_{eff}$  reveal the performance of  $G_A$ ?



 $W^{(L-1)}$ 



## **Our Approach: Calculate** $\beta_{\text{eff}}$

Theorem 1. Let ReLU be the activation function of  $G_A$ . When  $G_A$  converges, then  $\beta_{\text{eff}} = 0$ .





#### **Experiment Results**





Fig. 3 | The sensitivity analysis of the neural capacitance's predictive capability. a Our  $\beta_{eff}$  based prediction of the validation accuracy versus the true test accuracy at epoch 50 of seven representative pre-trained models. Each shape is associated with one type of pre-trained models. Distinct models of the same type are marked in different colors. Because the accuracy of AlexNet is much lower than others, we exclude it for better visualization. Its predicted accuracy is 0.871, and the true test accuracy is 0.868. If it is included,  $\rho = 0.93 > 0.92$ . **b** Impacts of the starting epoch  $t_0$  of the observations and (**c**) the number of training samples on the ranking performance of our  $\beta_{\text{eff}}$  based approach.



Fig. 4 | The validation accuracy prediction of pre-trained models on all five datasets. The validation accuracy based on  $\beta_{\text{eff}}$  is strongly correlated with the true test accuracy of these models after fine-tuning for T = 50 epochs. The Spearman's ranking correlation  $\rho$  is used to quantify the performance in model selection. Each

shape is associated with one type of pre-trained models. Distinct models of the same type are marked in different colors. To be noted, each includes AlexNet in computing  $\rho$ s.



Jiang, Chunheng, et al. "Network properties determine neural network performance." *Nature Communications* 15.1 (2024)

converting a neural network  $G_A$  to a line graph  $G_B$ 

reformulates SGD-based neural network training dynamics as an edge dynamics

a topological property  $\beta_{eff}$  of  $G_B$  predicts model performance from early training

#### **Sparse training**

Mocanu, Decebal Constantin, et al. "Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science." Nature communications 9.1 (2018): 2383.



#### Measurement

Kang, Chris, et al. "Structural network measures reveal the emergence of heavy-tailed degree distributions in lottery ticket multilayer perceptrons." Neural Networks (2025)



#### **Model selection**

Jiang, Chunheng, et al. "Network properties determine neural network performance." *Nature Communications* 15.1 (2024)





# Thanks

Jiayu Weng

Neural Networks Through the Lens of Network Science: Structure and Performance