Survey: Cross-Embodiment Manipulation Policy

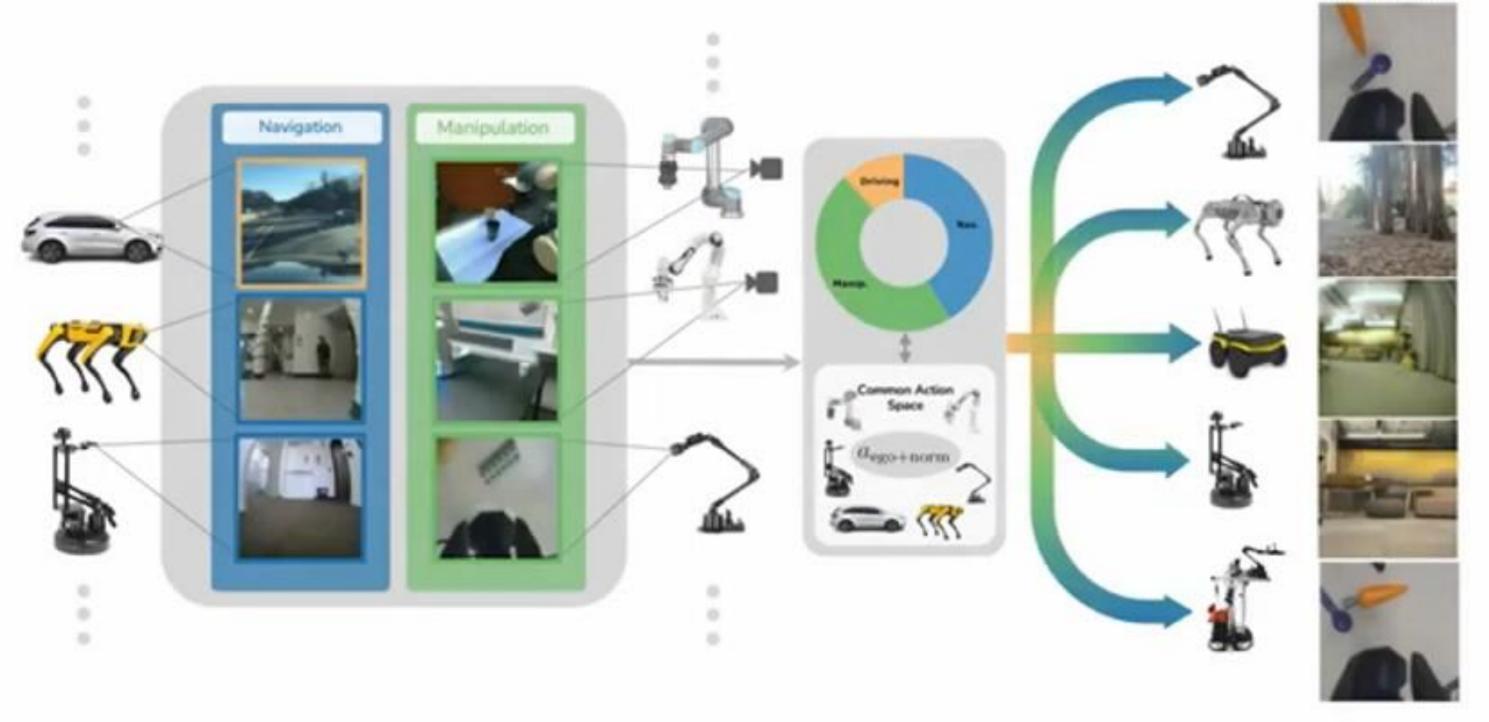
Zhuoheng Li

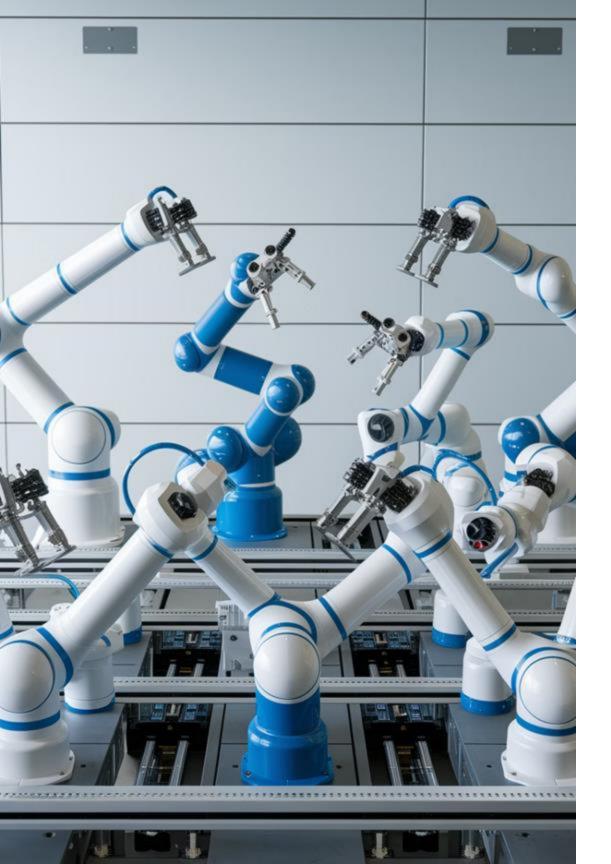
A policy For any task and any robot

A policy For any task and any robot

autonomous, 1x speed

A policy For any task and any robot





Why "Cross-Embodiment"?

<u>ຕ່ອງ</u>	One Controls All	$[\bigcirc]$	Use I
	Control different robotic		new
	arms with a single neural		After p
	network		cross-

Absorb Knowledge from Open-Source Datasets

which has different arm embodiments, camera perspectives, and gripper types.

- Less data from embodiment
- pretraining of the
- -embodiment

Two stages

Pretraining

Large multi-robot dataset from source domain

Finetuning

Small dataset from target robot

Two metrics

000

Success Metrics

Higher success with less data Retention of pre-trained tasks

Key Challenges

Preventing catastrophic forgetting Managing embodiment differences Optimizing data efficiency

Two approaches

(<u>...</u>)

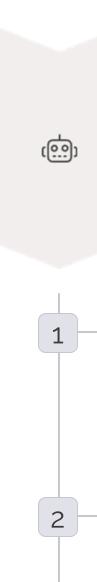
()

Embodiment-Agnostic Policy

Make the input / output / internal representations similar for different robots

Embodiment-Aware Policy

Use the robotics arm geometric configuration / camera view perspectives as conditional input



Embodiment-Agnostic Policy

Make the input / output / internal representations similar for different robots

Zero-Shot Transfer Methods

• Source domain manipulation

- Few-Shot Transfer Approaches
 - Domain-invariant transitions
 - Invariant features
 - Hierarchical policies
 - I don't care, just train a large VLA

Embodiment-Agnostic Policy

Make the input / output / internal representations similar for different robots

Zero-Shot Transfer Methods

Source domain manipulation

- Few-Shot Transfer Approaches
 - Domain-invariant transitions
 - Invariant features
 - Hierarchical policies
 - I don't care, just train a large VLA

Source Domain Manipulation: Unifying Model Input & Output Across Embodiments

You can either do

Special Hardware Design

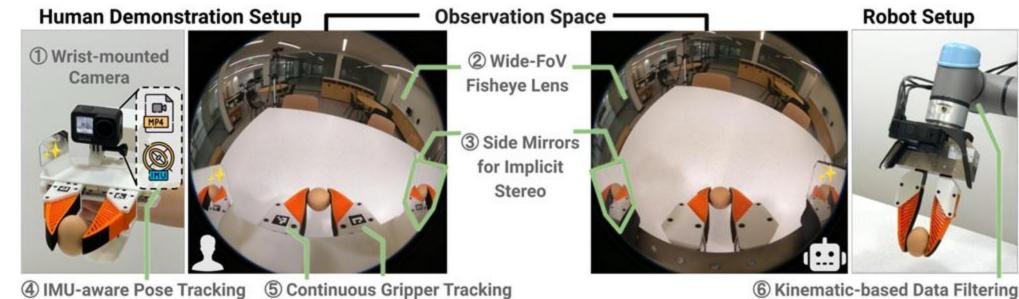


Image Editing

Hardware-Based Solutions - Approach

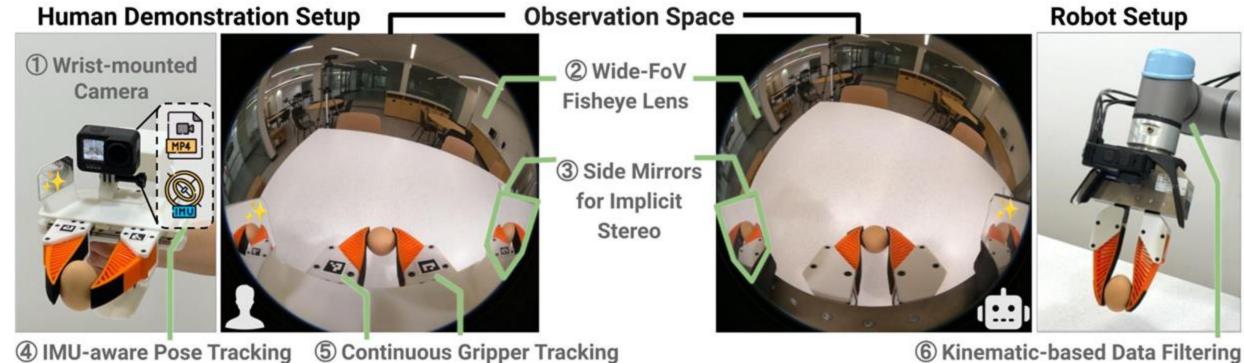
Concept

Use specialized hardware to standardize interfaces across different robotic arms.

This approach creates physical consistency between platforms.

Example Implementation

UMI employs hand-held grippers to unify control across different robotic arm systems. The hardware creates a common physical interface for all arms.



Chi, C., Xu, Z., Pan, C., Cousineau, E., Burchfiel, B., Feng, S., ... & Song, S. (2024). Universal manipulation interface: In-the-wild robot teaching without in-the-wild robots. arXiv preprint arXiv:2402.10329.

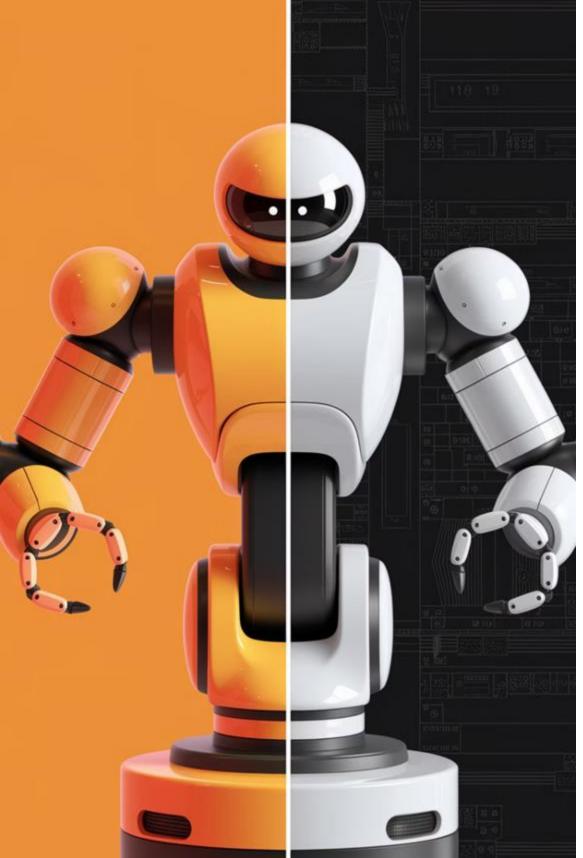


Image Editing - Key Papers

Mirage Inpaint images at test time to a single embodiment with robot masks, physical simulator, and rule-based fast matching inpainting algorithm. LookMaNoHand Finetune an SVD to remove franka panda robot from the images. RoviAug 0,0 Finetune an SVD to inpaint robot A to robot B.

Chen, L. Y., Hari, K., Dharmarajan, K., Xu, C., Vuong, Q., & Goldberg, K. (2024). Mirage: Cross-embodiment zero-shot policy transfer with cross-painting. arXiv preprint arXiv:2402.19249.

Chang, M., Prakash, A., & Gupta, S. (2023). Look ma, no hands! agent-environment factorization of egocentric videos. Advances in Neural Information Processing Systems, 36, 21466-21486.

Chen, L. Y., Xu, C., Dharmarajan, K., Irshad, M. Z., Cheng, R., Keutzer, K., ... & Goldberg, K. (2024). Rovi-aug: Robot and viewpoint augmentation for crossembodiment robot learning. arXiv preprint arXiv:2409.03403.

Tiger Task: Different Robot (UR5 + Robotiq)

- Source Policy: 90% on Source Robot
- 90% on Target Robot

Mirage (Cross-Painted)

Actual Target Robot

Source Domain Manipulation: Current Status

Simple Pick & Place tasks:

The success rate drop because of switching embodiments is under 10%.

More complex tasks:

Never tested.

For UMI hardware, the localization precision is ~cm so it cannot perform precise tasks (though the newest hardware PIKA has precision of ~mm).

On the other hand, image editing only makes visual features similar but there are still geometry and dynamics differences.

Embodiment-Agnostic Policy

Make the input / output / internal representations similar for different robots

Zero-Shot Transfer Methods

Source domain manipulation

- Few-Shot Transfer Approaches
 - Domain-invariant transitions
 - Invariant features
 - Hierarchical policies
 - I don't care, just train a large VLA

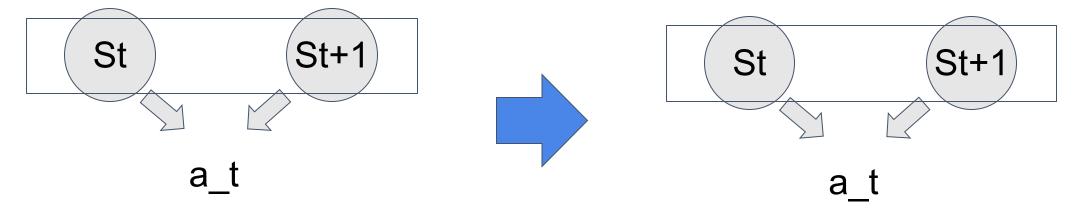
Use Domain-Invariant Transitions - Approach

Assuming you don't have any real-world manipulation data of the target robot, but you have a physical simulator and an URDF model of the target robot, which is a common case...

Use Domain-Invariant Transitions - MAIL

- 1. Train an inverse dynamic model (IDM) whose inputs are adjacent states of the manipulated object and outputs the intermediate action.
- 2. Use the IDM to infer action labels of target robot B, from manipulation videos of source robot A.

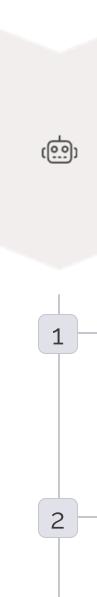
robot B state transitions



Train an IDM in simulation with **URDF model of target robot B**

Use IDM to infer actions of robot B from manipulation video of robot A

Salhotra, G., Liu, I., & Sukhatme, G. (2023). Learning robot manipulation from crossmorphology demonstration. arXiv preprint arXiv:2304.03833.



Embodiment-Agnostic Policy

Make the input / output / internal representations similar for different robots

Zero-Shot Transfer Methods

• Source domain manipulation

- Few-Shot Transfer Approaches
 - Domain-invariant transitions
 - Invariant features
 - Hierarchical policies
 - I don't care, just train a large VLA

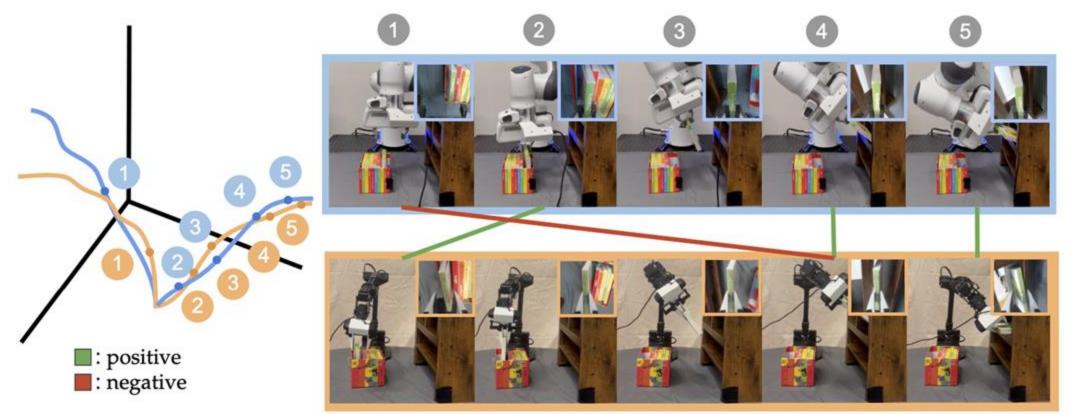
Invariant Features - Approaches

Do you have **paired data**? That means, given a trajectory of source robot A and a trajectory of target robot B, can you identify which states in the 2 trajectories are similar?

Learn Invariant Features from Paired Data - Polybot

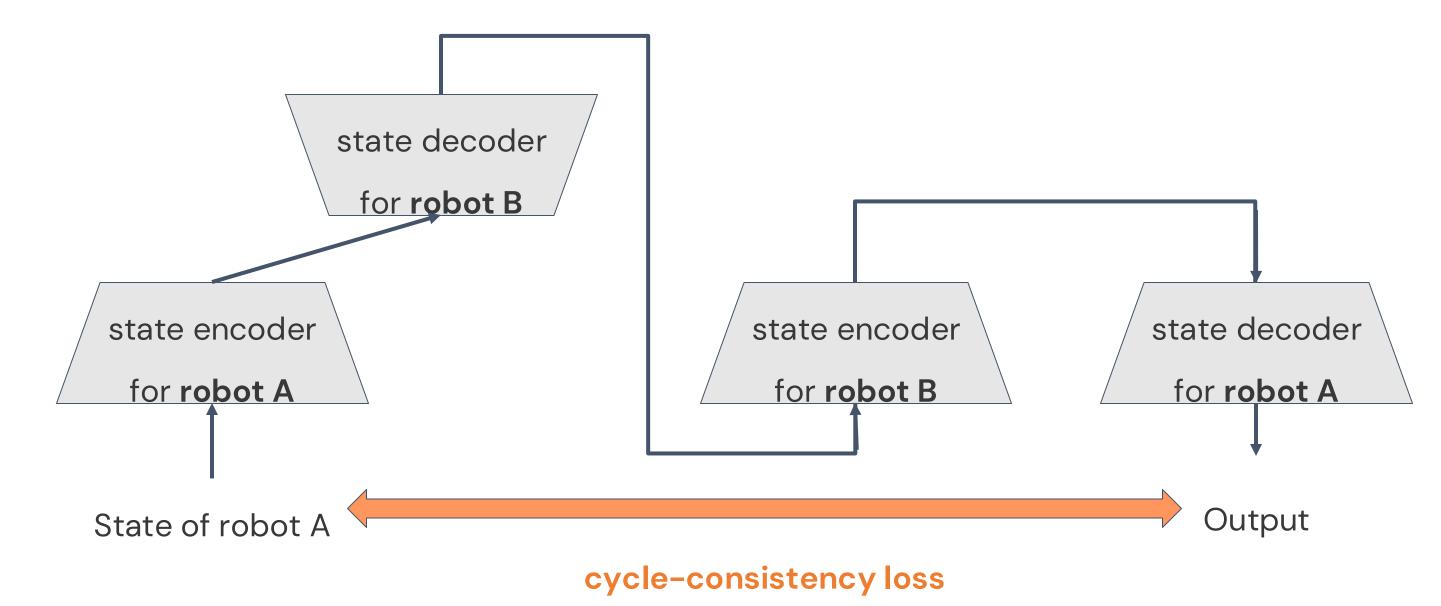
Learn Invariant Features from Paired Data - Polybot

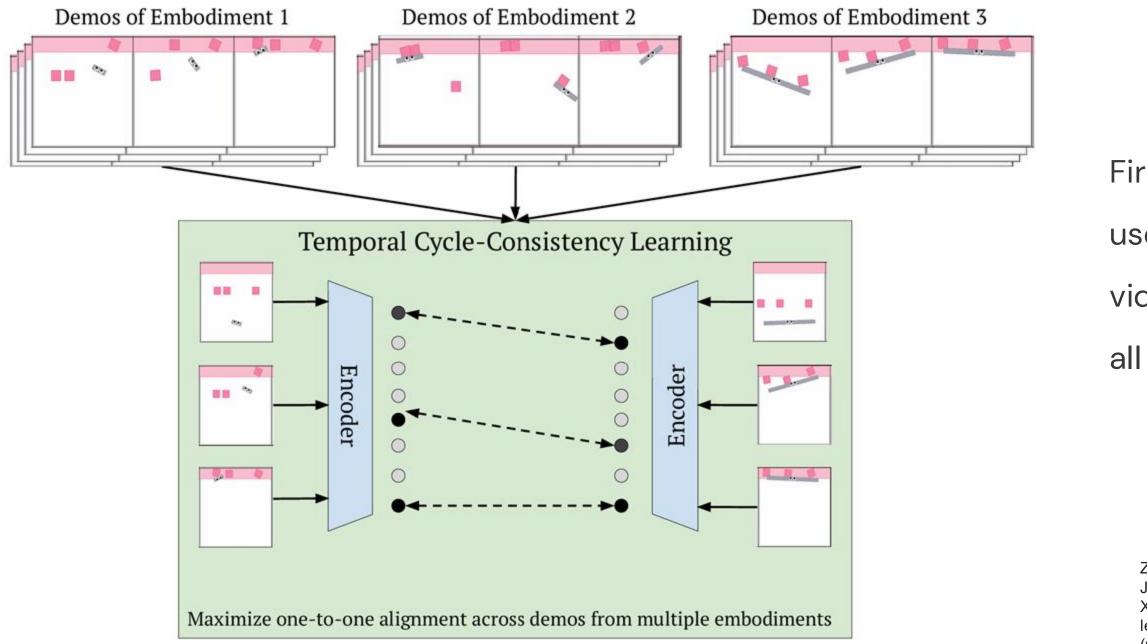
- Use contrastive learning to bring the representations of similar states in the trajectories of different robotic arms closer together
- Only use wrist camera views as visual input, i.e., no third-view cameras
- Use end effector poses as action representations



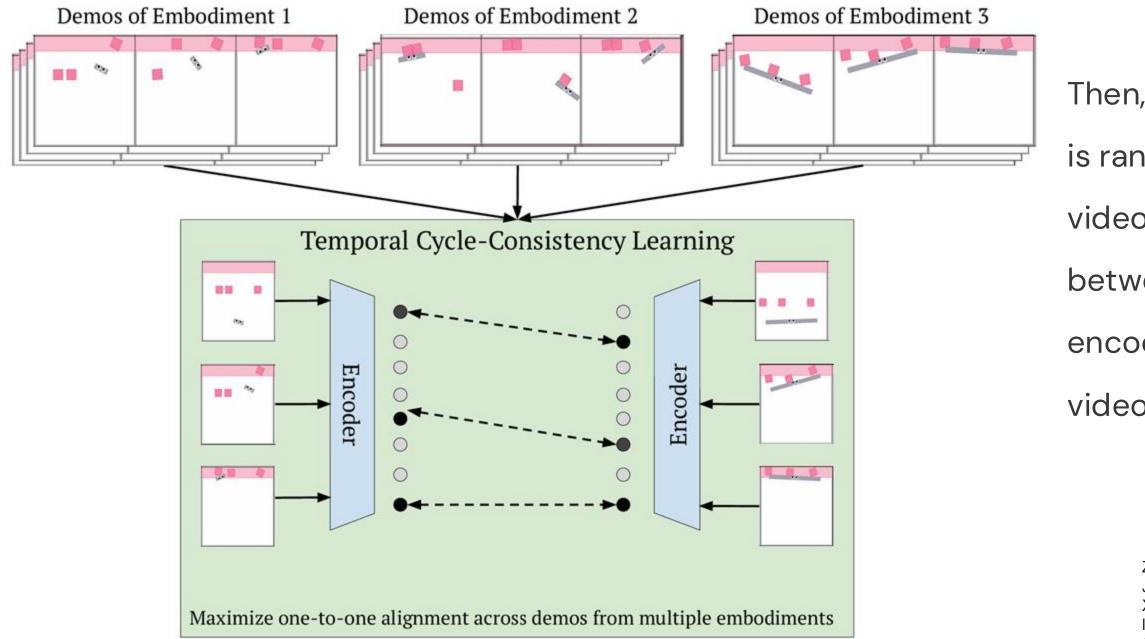
Yang, J., Sadigh, D., & Finn, C. (2023). Polybot: Training one policy across robots while embracing variability. *arXiv preprint arXiv:2307.03719*.

cycle-consistency loss, a simple example:

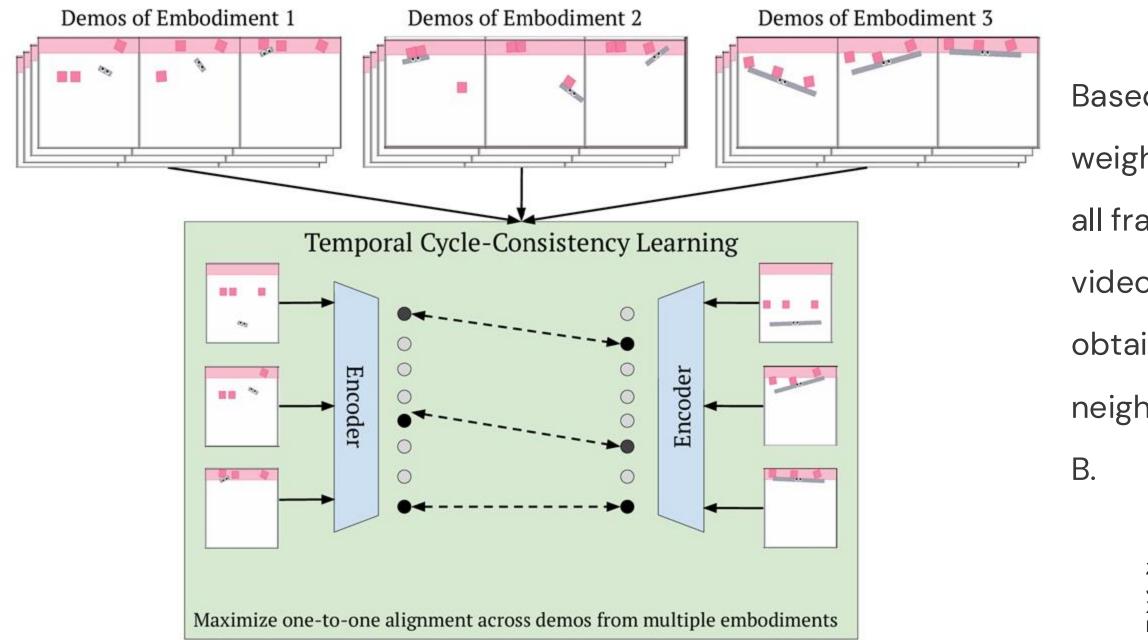




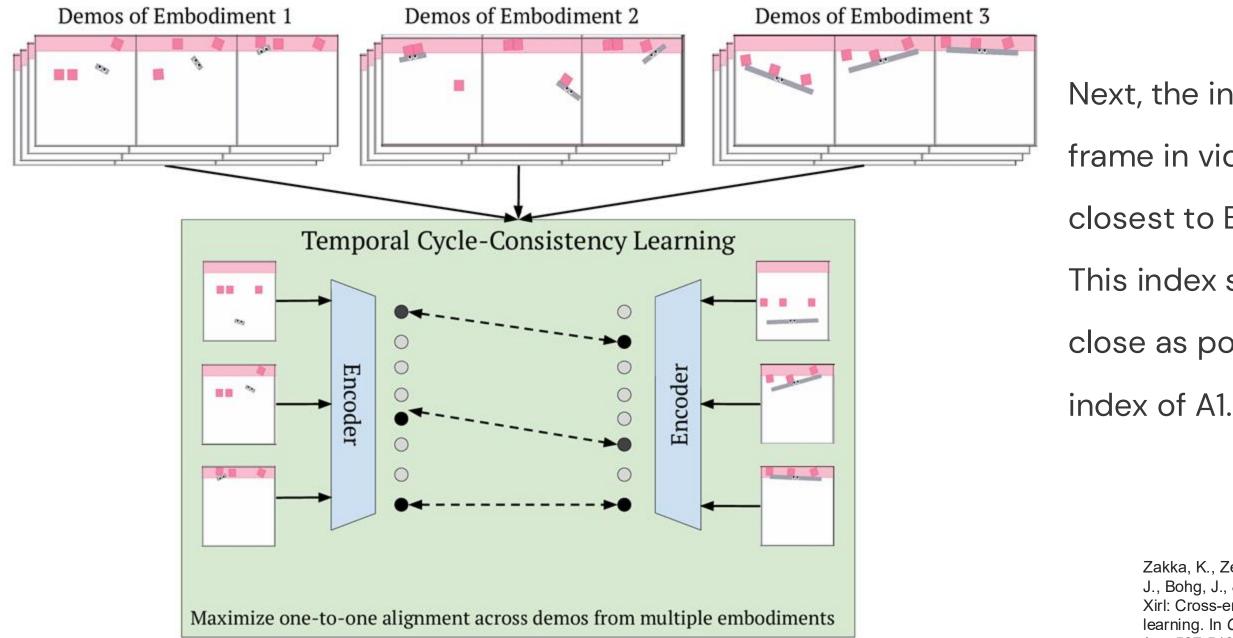
First, the encoder is used to encode all video frames from all embodiments



Then, a frame encoding A1 is randomly selected from video A, and the similarity between A1 and the encodings of all frames in video B is calculated



Based on this similarity, a weighted combination of all frame encodings in video B is computed to obtain the soft nearest neighbor B1 of A1 in video



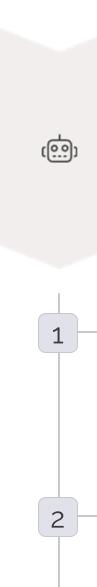
Next, the index of the frame in video A that is closest to B1 is identified. This index should be as close as possible to the index of A1

XIRL proposed a cycle-consistency loss to train a video encoder.

- First, the encoder is used to encode all video frames from all embodiments —
- Then, a frame encoding A1 is randomly selected from video A, and the similarity between — A1 and the encodings of all frames in video B is calculated
- Based on this similarity, a weighted combination of all frame encodings in video B is computed to obtain the soft nearest neighbor B1 of A1 in video B.
- Next, the index of the frame in video A that is closest to B1 is identified. This index should be as close as possible to the index of A1.

Learn Invariant Features - Challenges

How to scale up to N robots?



Embodiment-Agnostic Policy

Make the input / output / internal representations similar for different robots

Zero-Shot Transfer Methods

• Source domain manipulation

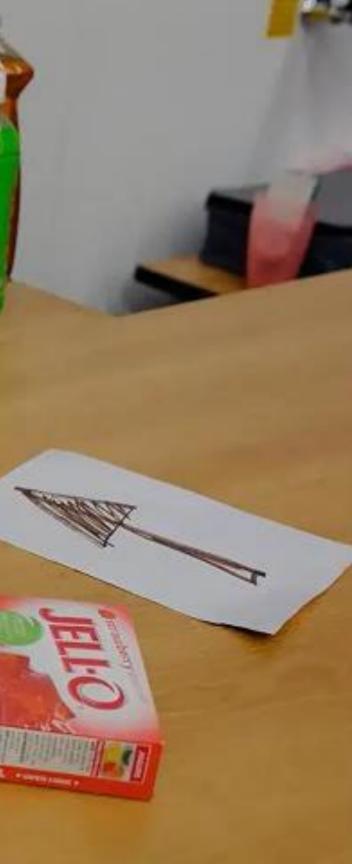
- Few-Shot Transfer Approaches
 - Domain-invariant transitions
 - Invariant features
 - Hierarchical policies
 - I don't care, just train a large VLA

Hierarchical Policy

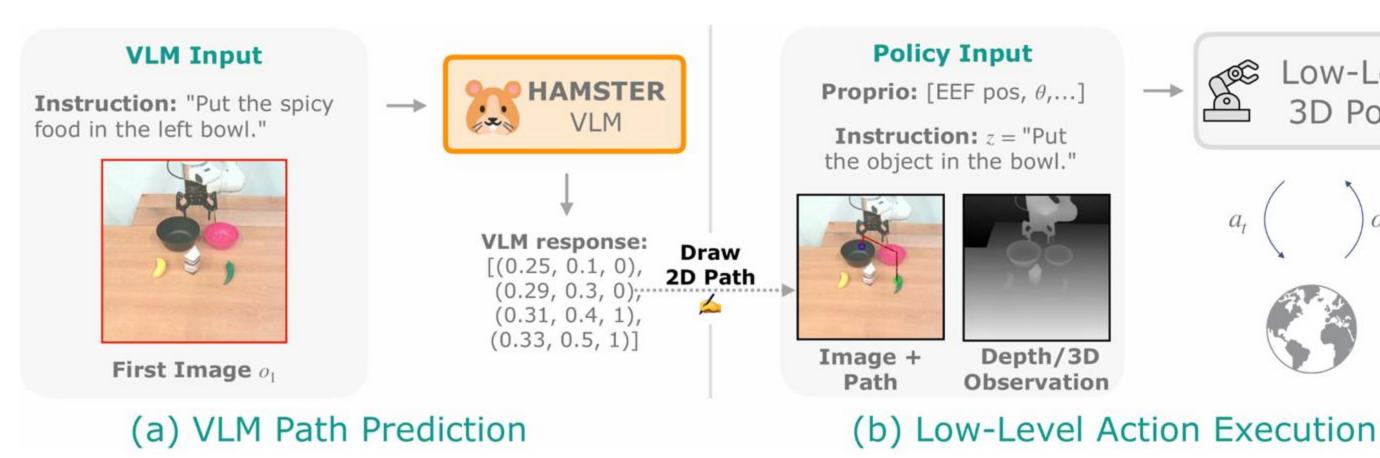
High-level policy outputs embodiment-agonistic actions Low-level policy outputs embodiment-specific actions

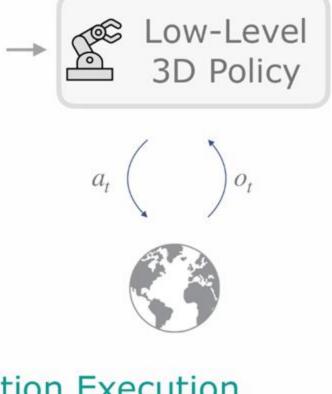
HAMSTER

Hierarchical Action Models For Open-World Robot Manipulation



Hierarchical Policy - Hamster





(<u>.</u>)

2

Embodiment-Agnostic Policy

Make the input / output / internal representations similar for different robots

Zero-Shot Transfer Methods

Source domain manipulation

- Few-Shot Transfer Approaches
 - Domain-invariant transitions
 - Invariant features
 - Hierarchical policies
 - I don't care, just train a large VLA

Index Range	Element Index	Mapped Ph
[0, 10)	0–9	Right arm
[10, 15)	10-14	Right grippe
[15, 25)	15-24	Right arm
[25, 30)	25-29	Right grippe
[30, 33)	30-32	Right end ef
[33, 39)	33-38	Right end et
[39, 42)	39–41	Right end ef
[42, 45)	42–44	Right end effected
[45, 50)	45-49	Re
[50, 60)	50-59	Left arm j
[60, 65)	60-64	Left gripper
[65, 75)	65-74	Left arm j
[75, 80)	75–79	Left gripper
[80, 83)	80-82	Left end eff
[83, 89)	83-88	Left end ef
[89, 92)	89-91	Left end eff
[92, 95)	92–94	Left end effecto
[95, 100)	95–99	Re
[100, 102)	100-101	Base line
[102, 103)	102	Base angu
[103, 128)	103–127	Re

Action encoding

of RDT-1B

Liu, S., Wu, L., Li, B., Tan, H., Chen, H., Wang, Z., ... & Zhu, J. (2024). Rdt-1b: a diffusion foundation model for bimanual manipulation. *arXiv* preprint arXiv:2410.07864.

nysical Quantity

joint positions er joint positions joint velocities er joint velocities effector positions effector 6D pose ffector velocities tor angular velocities eserved joint positions er joint positions ioint velocities r joint velocities ffector positions ffector 6D pose fector velocities or angular velocities eserved ear velocities ular velocities eserved

Does such VLA pretraining really helps downstream tasks?

TABLE XIV: Ablation experiment: fine-tuning OpenVLA from scratch with the OFT recipe. Policy inputs here include a third-person camera image, a wrist camera image, robot proprioceptive state, and a language instruction. The from-scratch policies generally perform worse than the full OpenVLA-OFT policies, confirming that OpenVLA's pretrained representation is beneficial for downstream policy performance even when the fine-tuning recipe differs substantially from the pretraining recipe.

	Spatial	Object	Goal	Long	Average
	SR (%)	SR (%)	SR (%)	SR (%)	SR (%)
OpenVLA-OFT	97.6	98.4	97.9	94.5	97.1
OpenVLA-OFT (scratch)	94.3	95.2	91.7	86.5	91.9

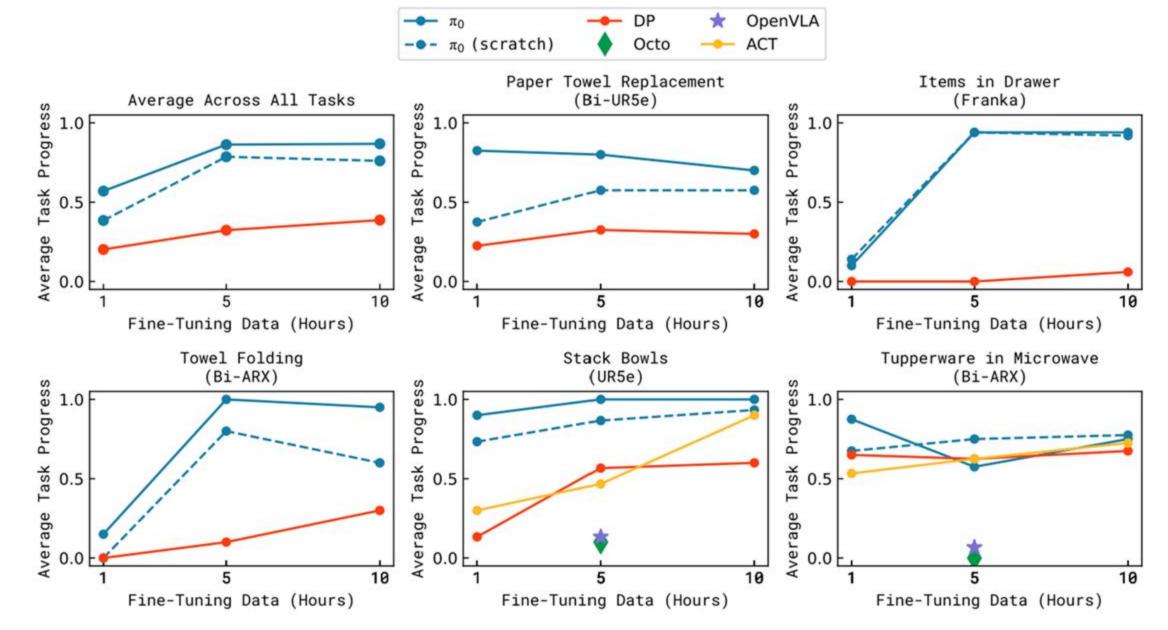


Fig. 11: Fine-tuning with varying amounts of data. π_0 can learn some easier tasks even with smaller amounts of data, and the pre-trained model often attains a larger improvement over the model trained from scratch.

If you have few finetuning

data:

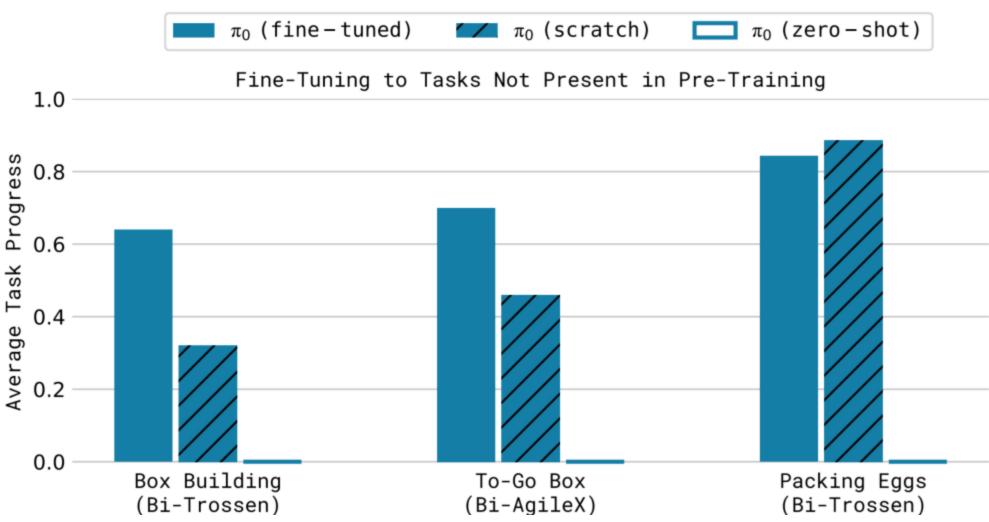
Pretraining helps a lot _

If you have >300

finetuning demos per

task:

Pretraining helps in some tasks, but not in



others

- I don't care, just train a large VLA
 - If you have **few finetuning data**:
 - Pretraining helps a lot

- If you have >300 finetuning demos per task:
- Pretraining helps in some tasks, but not in others

Does the VLA learn **common knowledge from different** robots, instead of learning independent implicit **policies for different robots**?

Embodiment-Aware Policy

ເຕີຍ

2

Use the robotics arm geometric configuration / camera view perspectives as conditional input

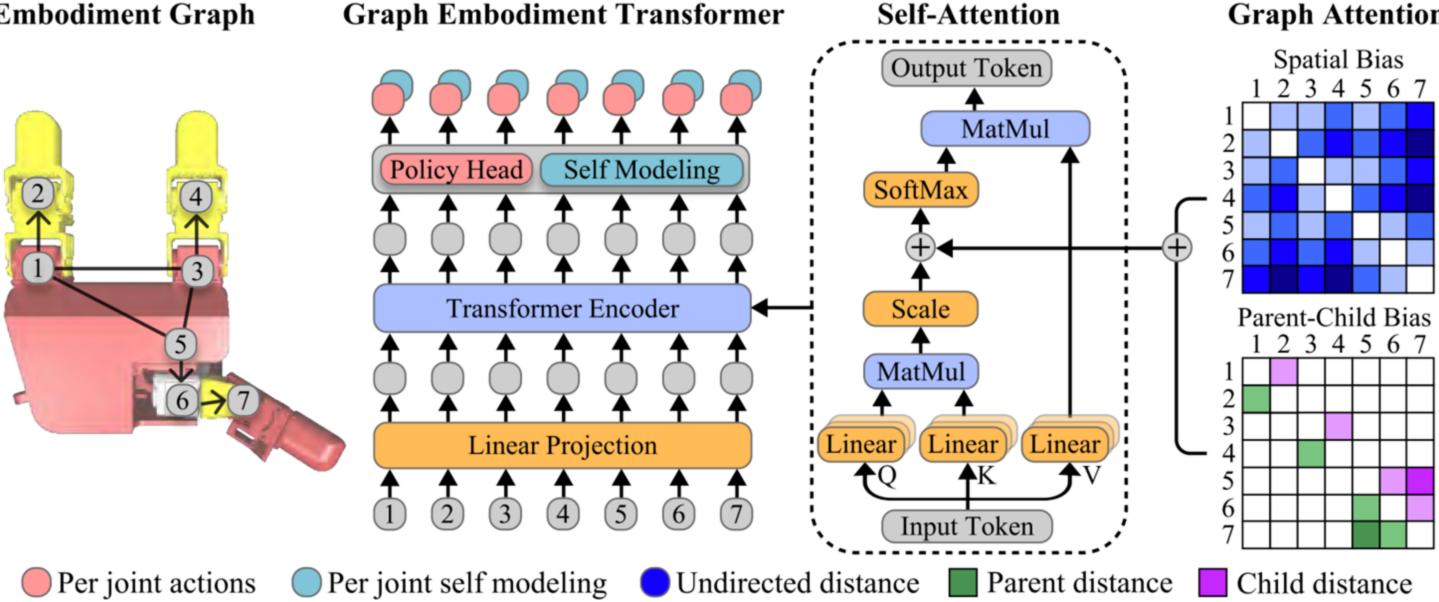
Geometric configuration as input

Camera view perspectives as input
(If you use 2D image input, rather than 3D point cloud input)

Geometric configuration as input

Embodiment Graph

Graph Embodiment Transformer



Patel, A., & Song, S. (2024). GET-Zero: Graph embodiment transformer for zero-shot embodiment generalization. arXiv preprint arXiv:2407.15002.

Graph Attention

Embodiment-Aware Policy

ເຕີຍ

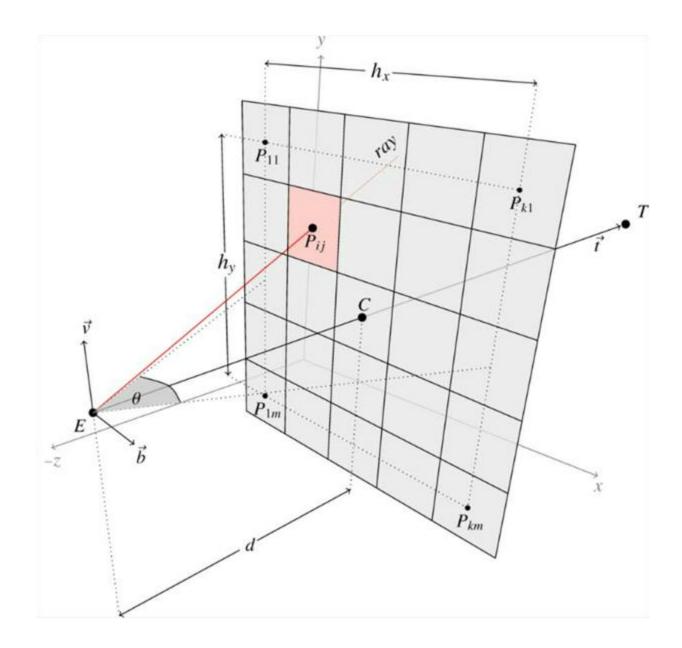
2

Use the robotics arm geometric configuration / camera view perspectives as conditional input

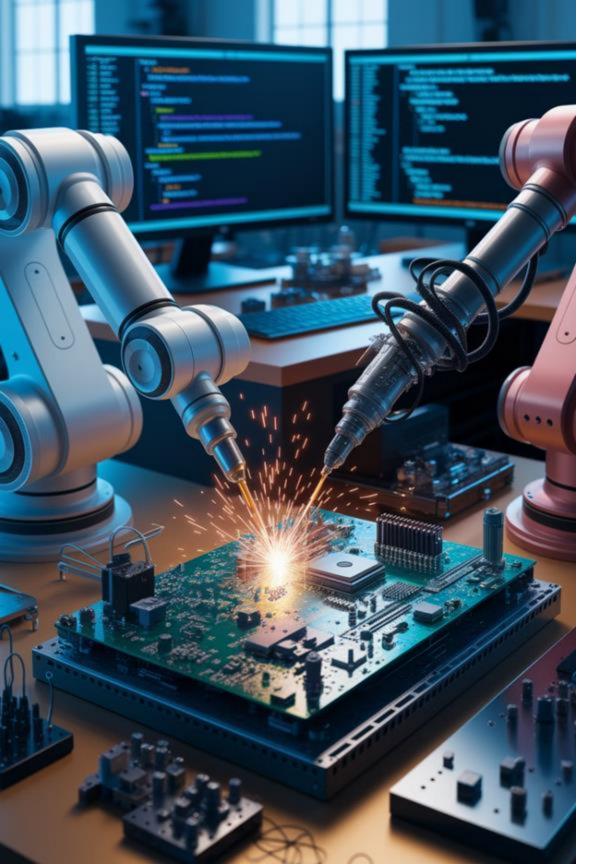
- Geometric configuration as input

Camera view perspectives as input (If you use 2D image input, rather than 3D point cloud input)

Camera view perspectives as input



Ray Direction Map: the 3D unit vector from the camera to each pixel, with dimensions (channel, height, width).



Future

Short-term: Use a hierarchical policy to reduce finetuning data of target robot

Long-term: Pretrain an embodiment-aware policy