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Urban areas naturally evolve toward
spatially optimized configurations
that minimize travel distances while
maximizing access to essential
services.

Z{aeA}USagea X population,,

usage, = : ,
population,
access, = { > _ }access percentile, . x weight,, where
cecategories
Y weight, =1
{cecategories}
Z{aeA}aCCeSSa x population,,
access, =

population,

whereArepresentsanurban areaand {a €A} represent theblock groups
contained withinit.
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Fig.2|Local trips in the United States. a, The cumulative distribution of 15-minute usage for US neighbourhoods. CDF, cumulative distribution function. b, 15-minute
usage for all urban areas in the United States. Basemap reproduced from Mapbox under CC BY 3.0. ¢, 15-minute usage for those urban areas that have the highest

proportions of local trips.
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= Only 14% of daily trips are
local for the median US
resident, with regional
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be more receptive to local Income decile
Iiving policies and Fig. 3| Local trips by income levels. 15-minute usage by neighbourhood income
Interventions. deciles for all urban areas, including New York (n =13,908 block groups), Detroit

(n=3,359block groups) and Atlanta (n = 2,338 block groups). The error bands
represent 95% confidence intervals.

Retrieved from: Abbiasov, T., Heine, C., Sabouri, S., Salazar-Miranda, A., Santi, P., Glaeser, E., & Ratti, C. (2024). The 15-minute city quantified using human mobility data. Nature Human Behaviour, 8(3), 445-455.




== HKU Musketeers Foundation

Institute of Data Science
EAKXKEBRLODESHER 2 XK

a m Midwest e Northeast a South ¢ West b
R?=0.84 " 80 1 R?=0.74 .
ew York o1
o » | g - s
@ 40 - @
c c
8 San Francis€o 8 60 4
o = 30 | Philadelphia / e E =
&ﬁ Reading { / 39\_0,
Q ]
g 8 Cleveland*} .@On % 8 40 -
fum etroit -
@ s 20 - * A - Portland @ :(-3:
8 o Avondale/P oenix Miami 8
3 -
£ 10 - i = 20 +
g Atlanta g
L2 L
0 0 -
20 40 60 25 50 75 100
15-minute access (no. of amenities, ranked) 15-minute access (no. of amenities, ranked)
Fig. 4| Access and local trips. a, Therelationship between 15-minute usage non-parametric spline regression, denoted by the same colour as the city. The R*
and access atthe urbanarealevel. b, The relationship between 15-minute usage valueinais derived from aregression analysis of 15-minute usage on 15-minute
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= Local living is determined by access to local amenities.
= Local trip patterns strongly influenced by amenities nearby.
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zoning and currentaccess. b, The reduced-form relation between historical specifications.

zoning and current 15-minute usage. Each dot represents a census block group

= Local zoning regulations shape the level of access to nearby amenities and more flexible local
zoning could be a natural policy lever for those advocates interested in increasing local trips.
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Fig. 6| Local trip behaviour and experienced segregation. a, Experienced
segregation against 15-minute access for neighbourhoods in different

income quartiles. b, Experienced segregation against 15-minute usage for
neighbourhoods indifferentincome quartiles. ¢, Experienced segregation
during short (<15 minutes) and long trips (>15 minutes) for residents of
neighbourhoodsindifferent income deciles. The box plots show the means and
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15-minute usage deciles
the 10th, 25th, 75th and 90th percentiles.Ina,b, n= 41,998, 37,676, 34,299 and
31,890 census block groups forincome quartiles 1, 2, 3 and 4, respectively. For ¢,
trips taken less than 15 minutes from home, n = 124,656 block groups. For ¢, trips
taken further than 15 minutes from home, n = 145,855 block groups. (Note that

residents of 21,119 census block groups take no trips within 15 minutesin
ourdataset).

Positive Impact: Increased local accessibility contributes to better health, sustainability, and community life.

Negative Impact: Without careful policy, the 15-minute city model may intensify social isolation in census groups.
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Deep learning-based models can integrate multiple types of data sources (e.qg., traffic, geographic,
demographic, and social media) to optimize urban mobility.

vances, and outlook. Information Fusion, 113, 102606.
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TECHNOLOGICAL INSIGHTS: FUTURE INNOVATIONS
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Businesses in these key areas act as
anchors for economic activity across
the region. s
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Business activity in Hong Kong and
Its boundary regions is tightly linked
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Need for Careful integration of
mobility data, policy, and
technology to ensure that Local Living becomes a Viable and

Beneficial Reality for All urban
residents.
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